Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
{
"cells": [
{
"cell_type": "markdown",
"id": "cdd5bdb3-6199-4289-9d1a-cb3c3839bb5a",
"metadata": {},
"source": [
"# Controversy RaG : classification automatique de publications scientifiques"
]
},
{
"cell_type": "markdown",
"id": "d9747cc5-0103-4245-9567-af7eb0224a83",
"metadata": {},
"source": [
"Ce notebook reprend les enseignements des expérimentations menées dans le cadre d'un projet d'automatisation de l'identification de publications scientifiques appartenant au domaine des Sciences et Recherches Participatives. \n",
"\n",
"Il capitalise plusieurs mois d'expérimentations en matière d'apprentissage machine (few-shot learning) reposant sur l'utilisation des modèles de langues de dimensions variées."
]
},
{
"cell_type": "markdown",
"id": "6e862775-7017-4e9e-a865-020c8c048ccf",
"metadata": {},
"source": [
"## Description du projet"
]
},
{
"cell_type": "markdown",
"id": "78632b41-fae1-4998-89c2-11f284b54b1b",
"metadata": {},
"source": [
"## Problématique\n",
"\n",
"Lorsque des experts doivent décider si un document appartient ou pas au domaine des Sciences et Recherches Participatives, ils se basent sur une série d'indices textuels qui malheureusement, en dehors de l'identification de termes clés, ne sont pas explicités. Cela s'explique en partie par le fait que les alignements cognitifs qui se font entre ce qu'ils lisent et percoivent d'un ensemble de résumés et de mots-clés auteurs et la représentation mentale qu'ils se font du champ à délinéer, sont largement inconscients.\n",
"\n",
"Cela signifie que lorsque l'on veut traduire ces mécanismes de catégorisation en algorithme d'apprentissage on ne dispose en réalité que de peu de matériaux. \n",
"\n",
"Dans notre cas, ces matériaux se résument à une série de mot-clés. Or, la présence ou l'absence de mots-clés ne suffisent pas à eux seuls à catégoriser l'appartenance d'un texte à un domaine. \n",
"\n",
"[donner exemple]\n",
"\n",
"L'objectif de ces expérimentations était de voir si en utilisant des modèles de langue, un ensemble minimal de données annotées, on est en mesure de recoder, plus ou moins parfaitement "
]
},
{
"cell_type": "markdown",
"id": "6fe8594e-8b93-4d80-af3c-fb8f5bdee515",
"metadata": {},
"source": [
"## Code - Experimentations"
]
},
{
"cell_type": "markdown",
"id": "3730f089-7102-4783-968a-d2b4301d4fe6",
"metadata": {},
"source": [
"### Installation des paramètres d'environnement"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "9d8cf842-3f72-4300-8988-3bac5e814fad",
"metadata": {},
"outputs": [],
"source": [
"### Chargement des librairies"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "9f63996b-32c3-498e-babb-9d7e7d97f8c4",
"metadata": {},
"outputs": [],
"source": [
"#### A. Librairies python pour la gestion de l'environnement de travail\n",
"import os\n",
"import time"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "2d8b00bb-0129-4c9f-bbea-be259942f6c7",
"metadata": {},
"outputs": [],
"source": [
"#### B. Librairies python pour la manipulation de string\n",
"import ast\n",
"import json\n",
"import re"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "9d7c2d9b-e095-41cc-8910-d087a66ebb01",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO: Pandarallel will run on 6 workers.\n",
"INFO: Pandarallel will use Memory file system to transfer data between the main process and workers.\n"
]
}
],
"source": [
"#### C. Librairies python pour la manipulation de dataframes\n",
"import numpy as np\n",
"from pandarallel import pandarallel\n",
"pandarallel.initialize(nb_workers=6,progress_bar=True)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "59e02aee-d698-4748-b2ca-4655a2421705",
"metadata": {},
"outputs": [],
"source": [
"#### D. Librairies python pour la production de datavisualisation et \n",
"#### la manipulation de données vectorielles\n",
"import matplotlib.pyplot as plt\n",
"from sklearn.preprocessing import MinMaxScaler\n",
"from sklearn.cluster import KMeans\n",
"from sklearn.metrics import silhouette_score\n",
"from sklearn.metrics.pairwise import cosine_distances\n",
"from sklearn.neighbors import NearestNeighbors\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "ab0479ab-3e8e-4c5e-bb46-c5f062112a39",
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "1e85a083-b5e8-4e15-a422-d934bc06c2d8",
"metadata": {},
"outputs": [],
"source": [
"#### E. Librairies python dédiées au NLP\n",
"import rank_bm25\n",
"from rank_bm25 import BM25Okapi\n",
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
"from sentence_transformers import SentenceTransformer\n",
"from transformers import BertTokenizer,BertTokenizerFast, BertModel"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "6570ccbf-1822-4c95-ba42-c22d0d4287b2",
"metadata": {},
"outputs": [],
"source": [
"#### F. Librairies python pour la manipulation de modèles de langue \n",
"#### et la création de pipelines de traitements\n",
"from langchain_experimental.text_splitter import SemanticChunker\n",
"from langchain_huggingface import HuggingFaceEmbeddings\n",
"from langchain.retrievers import BM25Retriever, EnsembleRetriever\n",
"from langchain_core.documents import Document\n",
"from langchain_chroma import Chroma\n",
"from langchain_huggingface import HuggingFaceEmbeddings\n",
"from chromadb.utils import embedding_functions\n",
"import torch"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "ea3ccc29-df60-4a1d-8796-a8dc0a894fcc",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"cuda:0\n"
]
}
],
"source": [
"### On vérifie que l'on travaille bien avec le gpu\n",
"device = \"cuda:0\" if torch.cuda.is_available() else \"cpu\"\n",
"print(device)"
]
},
{
"cell_type": "code",
"id": "3a65f885-b6c8-4083-a05b-a1ac81fa4b78",
"metadata": {},
"outputs": [],
"source": [
"#### G. Modules maison\n",
"##### tok_func est un module (script python ici) qui rassemble dans un même fichier\n",
"##### l'ensembles des fonctions de pre-processing des données textuelles (nettoyage, \n",
"##### standardisation, tokenization, lemmatisation, ...)\n",
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "f435e71e-3211-4be0-a67b-08d841282f40",
"metadata": {},
"outputs": [],
"source": [
"#### Pré-chargment de modèles (ne pas toucher)\n",
"##### Pour éviter certains warnings dû à l'utilisation d'opérations\n",
"##### d'encodage de données textuelles se faisant dans des fonctions\n",
"##### on précharge avant l'utilisation de ces fonctions (dans le script tok_func)\n",
"##### les modèles de langue à utiliser.\n",
"##### Attention le modèle Qwen Instruct est très lourd. Sur votre machine vous devrez \n",
"##### sûrement le modifier pour un modèle plus léger.\n",
"###https://huggingface.co/sentence-transformers/allenai-specter\n",
"docmodel= None\n",
"kwrdmdl = None\n",
"spectermodel = SentenceTransformer(\n",
" \"sentence-transformers/allenai-specter\", trust_remote_code=True\n",
")"
]
},
{
"cell_type": "markdown",
"id": "7d76c76c-282a-431a-8f61-4c5eb1f74074",
"metadata": {},
"source": [
"### Fonctions utilisées "
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "00ac6224-198f-478e-816d-4cb54d941d99",
"metadata": {},
"outputs": [],
"source": [
"def get_sbert_embedding(document, model_name='all-MiniLM-L6-v2'):\n",
" '''Function takes as input raw text and return its bert embeddings.\n",
" It uses sentence Bert as we focus at the text level and not the token level'''\n",
" global docmodel\n",
" # Load the SBERT model only if it hasn't been loaded yet\n",
" if docmodel is None:\n",
" docmodel = SentenceTransformer(model_name)\n",
"\n",
" # Get the embedding\n",
" embedding = docmodel.encode(document, convert_to_numpy=True)\n",
" \n",
" return embedding"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "b18eb638-7ef6-4618-bb86-1da8e0c14ffb",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO: Pandarallel will run on 30 workers.\n",
"INFO: Pandarallel will use Memory file system to transfer data between the main process and workers.\n"
]
}
],
"source": [
"from pandarallel import pandarallel\n",
"pandarallel.initialize(nb_workers=30,progress_bar=True)"
]
},
{
"cell_type": "markdown",
"id": "6feede94-3789-4875-bfed-3b6eb9fc3b60",
"metadata": {},
"source": [
"### Import et PreProcessing des données"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "c2cec83e-3a54-4303-ac83-d77738da57d0",
"metadata": {},
"outputs": [],
"source": [
"#### le dataframe keywords_df contient la liste des mots-clefs repérés par les experts \n",
"#### pour la construction de la requête d'interrogation des platformes bibliographiques\n",
"#### ainsi que des mots-clefs supplémentaires repérés au cours de leur examen des ensembles\n",
"#### titres+résumés\n",
"\n",
"keywords_df = pd.read_csv(\"/home/trix/Dev/classification/Data/corpuskeywordsV2.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "b3b369fa-c42d-4918-9d57-ee3445a71544",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1156\n",
"1156\n"
]
}
],
"source": [
"#### le dataframe expert_df constitue le corpus d'apprentissage et d'entraînement à partir\n",
"#### duquel les expérimentations de few-shot learning seront menées.\n",
"#### Ce dataset a été annoté par des experts, et augmentés de données afin d'accroître le\n",
"#### nombre de publications hors-champ.\n",
"\n",
"expert_df = pd.read_excel(\"/home/trix/Dev/classification/Data/Annotated_Complemented_ExpertDataset_20241106.xlsx\")\n",
"print(len(expert_df))\n",
"\n",
"#### vérifions qu'il n'y ait pas de publications en double dans ce dataset \n",
"expert_df.drop_duplicates(subset='cle_UT')\n",
"print(len(expert_df))"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "b9314924-9b61-4193-85a8-4e05565c0a87",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Composition du dataset pour l'entraînement et les tests des expérimentations de classification:\n",
"\n",
"\tNombre de publications du dataset:\n",
"\t1156\n",
"\n",
"\tNombre de publications dans le champ:\n",
"\t242\n",
"\n",
"\tNombre de publications hors-champ:\n",
"\t883\n",
"\n",
"\tNombre de publications ambigües:\n",
"\t30\n"
]
}
],
"source": [
"print(\"Composition du dataset pour l'entraînement et les tests des expérimentations de classification:\")\n",
"print(f\"\\n\\tNombre de publications du dataset:\\n\\t{len(expert_df)}\")\n",
"print(f\"\\n\\tNombre de publications dans le champ:\\n\\t{len(expert_df[expert_df.label == 'yes'])}\")\n",
"print(f\"\\n\\tNombre de publications hors-champ:\\n\\t{len(expert_df[expert_df.label == 'no'])}\")\n",
"print(f\"\\n\\tNombre de publications ambigües:\\n\\t{len(expert_df[expert_df.label == 'ambiguous'])}\")"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "fb0ab3a4-4702-4fde-84d0-fd01df5ce3e4",
"metadata": {},
"outputs": [],
"source": [
"#### Dans notre cas il existe en réalité une troisime catégorie identifiée \n",
"#### par les experts: ambiguës. Cetta catégorie est toutefois trop peu importante\n",
"#### pour que l'on puisse s'en servir (résultat de précédentes expérimentations).\n",
"#### On considère donc qu'elles sont hors-champ. Pour ne pas perdre leur trace\n",
"#### on effectue une copie du dataframe original.\n",
"\n",
"expert_copy = expert_df.copy()\n",
"expert_copy['label'] = expert_copy.label.apply(lambda x: 'participative science' if x == 'yes' else x)\n",
"expert_copy['label'] = expert_copy.label.apply(lambda x: 'non-participative science' if x == 'no' else x)\n",
"expert_copy['label'] = expert_copy.label.apply(lambda x: 'non-participative science' if x == 'ambiguous' else x)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "092d0945-e874-41b3-8397-71d015ecff1b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Composition du dataset pour l'entraînement et le test du classificateur:\n",
"\n",
"\tNombre de publications du dataset:\n",
"\t1156\n",
"\n",
"\tNombre de publications dans le champ:\n",
"\t242\n",
"\n",
"\tNombre de publications hors-champ:\n",
"\t913\n",
"\n",
"\tNombre de publications ambigües:\n",
"\t0\n"
]
}
],
"source": [
"print(\"Composition du dataset pour l'entraînement et le test du classificateur:\")\n",
"print(f\"\\n\\tNombre de publications du dataset:\\n\\t{len(expert_copy)}\")\n",
"print(f\"\\n\\tNombre de publications dans le champ:\\n\\t{len(expert_copy[expert_copy.label == 'participative science'])}\")\n",
"print(f\"\\n\\tNombre de publications hors-champ:\\n\\t{len(expert_copy[expert_copy.label == 'non-participative science'])}\")\n",
"print(f\"\\n\\tNombre de publications ambigües:\\n\\t{len(expert_copy[expert_copy.label == 'ambiguous'])}\")"
]
},
{
"cell_type": "markdown",
"id": "9aab6dfa-e7ee-4df9-8566-bb51fddc1381",
"metadata": {},
"source": [
"Comme on peut le voir, dans le corpus qui va nous servir de dataset d'entraînement et de test, 79% des publications annotées sont hors-champ; 21% dans le champ."
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "a7fcc0cc-708c-4973-941c-87010bff5395",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9ee82e88c58540a281549d038a23cbf2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(HBox(children=(IntProgress(value=0, description='0.00%', max=39), Label(value='0 / 39'))), HBox…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e6b92ba89fb84a31a58fb17fdb36ac3e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(HBox(children=(IntProgress(value=0, description='0.00%', max=39), Label(value='0 / 39'))), HBox…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "75138e95632a4c6db780357d72fcf0cd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(HBox(children=(IntProgress(value=0, description='0.00%', max=39), Label(value='0 / 39'))), HBox…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"ename": "KeyError",
"evalue": "\"['Unnamed: 0'] not found in axis\"",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
"File \u001b[0;32m<timed exec>:12\u001b[0m\n",
"File \u001b[0;32m~/pythonenvs/envs/llm_rag/lib/python3.11/site-packages/pandas/core/frame.py:5581\u001b[0m, in \u001b[0;36mDataFrame.drop\u001b[0;34m(self, labels, axis, index, columns, level, inplace, errors)\u001b[0m\n\u001b[1;32m 5433\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21mdrop\u001b[39m(\n\u001b[1;32m 5434\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 5435\u001b[0m labels: IndexLabel \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 5442\u001b[0m errors: IgnoreRaise \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mraise\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 5443\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m DataFrame \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 5444\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 5445\u001b[0m \u001b[38;5;124;03m Drop specified labels from rows or columns.\u001b[39;00m\n\u001b[1;32m 5446\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 5579\u001b[0m \u001b[38;5;124;03m weight 1.0 0.8\u001b[39;00m\n\u001b[1;32m 5580\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m-> 5581\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdrop\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 5582\u001b[0m \u001b[43m \u001b[49m\u001b[43mlabels\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlabels\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 5583\u001b[0m \u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 5584\u001b[0m \u001b[43m \u001b[49m\u001b[43mindex\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mindex\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 5585\u001b[0m \u001b[43m \u001b[49m\u001b[43mcolumns\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcolumns\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 5586\u001b[0m \u001b[43m \u001b[49m\u001b[43mlevel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlevel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 5587\u001b[0m \u001b[43m \u001b[49m\u001b[43minplace\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minplace\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 5588\u001b[0m \u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43merrors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 5589\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/pythonenvs/envs/llm_rag/lib/python3.11/site-packages/pandas/core/generic.py:4788\u001b[0m, in \u001b[0;36mNDFrame.drop\u001b[0;34m(self, labels, axis, index, columns, level, inplace, errors)\u001b[0m\n\u001b[1;32m 4786\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m axis, labels \u001b[38;5;129;01min\u001b[39;00m axes\u001b[38;5;241m.\u001b[39mitems():\n\u001b[1;32m 4787\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m labels \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m-> 4788\u001b[0m obj \u001b[38;5;241m=\u001b[39m \u001b[43mobj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_drop_axis\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlabels\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlevel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlevel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43merrors\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 4790\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m inplace:\n\u001b[1;32m 4791\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_update_inplace(obj)\n",
"File \u001b[0;32m~/pythonenvs/envs/llm_rag/lib/python3.11/site-packages/pandas/core/generic.py:4830\u001b[0m, in \u001b[0;36mNDFrame._drop_axis\u001b[0;34m(self, labels, axis, level, errors, only_slice)\u001b[0m\n\u001b[1;32m 4828\u001b[0m new_axis \u001b[38;5;241m=\u001b[39m axis\u001b[38;5;241m.\u001b[39mdrop(labels, level\u001b[38;5;241m=\u001b[39mlevel, errors\u001b[38;5;241m=\u001b[39merrors)\n\u001b[1;32m 4829\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 4830\u001b[0m new_axis \u001b[38;5;241m=\u001b[39m \u001b[43maxis\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdrop\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlabels\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43merrors\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 4831\u001b[0m indexer \u001b[38;5;241m=\u001b[39m axis\u001b[38;5;241m.\u001b[39mget_indexer(new_axis)\n\u001b[1;32m 4833\u001b[0m \u001b[38;5;66;03m# Case for non-unique axis\u001b[39;00m\n\u001b[1;32m 4834\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n",
"File \u001b[0;32m~/pythonenvs/envs/llm_rag/lib/python3.11/site-packages/pandas/core/indexes/base.py:7070\u001b[0m, in \u001b[0;36mIndex.drop\u001b[0;34m(self, labels, errors)\u001b[0m\n\u001b[1;32m 7068\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m mask\u001b[38;5;241m.\u001b[39many():\n\u001b[1;32m 7069\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m errors \u001b[38;5;241m!=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mignore\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m-> 7070\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mlabels[mask]\u001b[38;5;241m.\u001b[39mtolist()\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m not found in axis\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 7071\u001b[0m indexer \u001b[38;5;241m=\u001b[39m indexer[\u001b[38;5;241m~\u001b[39mmask]\n\u001b[1;32m 7072\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdelete(indexer)\n",
"\u001b[0;31mKeyError\u001b[0m: \"['Unnamed: 0'] not found in axis\""
]
}
],
"source": [
"%%time\n",
"#### Plusieurs opérations sont réalisées ici:\n",
"#### - découpage des données textuelles (tritres+abstracts) en phrases (raw sentences),\n",
"#### - nettoyage de ces phrases (cleaned_sentences),\n",
"#### - transformation des keywords auteur en liste de mots-clés (changement de type de données),\n",
"\n",
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"True\"\n",
"expert_copy['raw_sentences'] = expert_copy.tires.apply(lambda x: get_sentences(x,tokenized=False,rawsent = True))\n",
"expert_copy['cleaned_sentences'] = expert_copy.tires.parallel_apply(lambda x: get_sentences(x,tokenized=False, rawsent = False))\n",
"expert_copy['tokenized_doc'] = expert_copy.tires.parallel_apply(lambda x: get_sentences(x, tokenized=True))\n",
"expert_copy['keywords'] = expert_copy.keywords.apply(lambda x: ast.literal_eval(x) if x!= \"Null\" else [\"Null\"])\n",
"expert_copy['participatory_keywords'] = expert_copy.cleaned_sentences.parallel_apply(lambda x: extract_targets(x))\n",
"expert_copy = expert_copy.drop(columns=['Unnamed: 0'],axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "d290775f-760a-4b32-b96d-fdfe9d982dd3",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Index</th>\n",
" <th>cle_UT</th>\n",
" <th>doi</th>\n",
" <th>tires</th>\n",
" <th>keywords</th>\n",
" <th>year</th>\n",
" <th>label</th>\n",
" <th>references</th>\n",
" <th>raw_sentences</th>\n",
" <th>cleaned_sentences</th>\n",
" <th>tokenized_doc</th>\n",
" <th>participatory_keywords</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>11</td>\n",
" <td>WOS:000928116000001</td>\n",
" <td>10.1177/16094069221137492</td>\n",
" <td>Tailoring Cognitive Mapping Analysis Methods t...</td>\n",
" <td>[participatory_research, social_learning, coll...</td>\n",
" <td>2022</td>\n",
" <td>participative science</td>\n",
" <td>001-076-538-431-45X,001-162-706-708-552,004-42...</td>\n",
" <td>tailor cognitive mapping analysis methods diff...</td>\n",
" <td>tailor cognitive mapping analysis methods diff...</td>\n",
" <td>[tailor, cognitive, mapping, analysis, methods...</td>\n",
" <td>participatory_process</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>12</td>\n",
" <td>WOS:000895513400001</td>\n",
" <td>10.3390/land11112095</td>\n",
" <td>Who and Where Are the Observers behind Biodive...</td>\n",
" <td>[citizen_science, spatial_bias, observer_profi...</td>\n",
" <td>2022</td>\n",
" <td>participative science</td>\n",
" <td>000-826-091-294-906,002-078-837-621-902,003-66...</td>\n",
" <td>observer biodiversity citizen_science data. ef...</td>\n",
" <td>observer biodiversity citizen_science data. ef...</td>\n",
" <td>[observer, biodiversity, citizen_science, data...</td>\n",
" <td>behavior_volunteer_engagement;citizen_science;...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>14</td>\n",
" <td>WOS:000880001000004</td>\n",
" <td>10.1016/j.ejsobi.2022.103449</td>\n",
" <td>Gut content metabarcoding and citizen science ...</td>\n",
" <td>[citizen_science, earthworms, flatworms, gut_c...</td>\n",
" <td>2022</td>\n",
" <td>participative science</td>\n",
" <td>000-069-184-790-014,001-257-411-314-46X,003-53...</td>\n",
" <td>gut content metabarcoding citizen_science reve...</td>\n",
" <td>gut content metabarcoding citizen_science reve...</td>\n",
" <td>[gut, content, metabarcoding, citizen_science,...</td>\n",
" <td>citizen_science;volunteer_reporting</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Index cle_UT doi \\\n",
"0 11 WOS:000928116000001 10.1177/16094069221137492 \n",
"1 12 WOS:000895513400001 10.3390/land11112095 \n",
"2 14 WOS:000880001000004 10.1016/j.ejsobi.2022.103449 \n",
"\n",
" tires \\\n",
"0 Tailoring Cognitive Mapping Analysis Methods t... \n",
"1 Who and Where Are the Observers behind Biodive... \n",
"2 Gut content metabarcoding and citizen science ... \n",
"\n",
" keywords year \\\n",
"0 [participatory_research, social_learning, coll... 2022 \n",
"1 [citizen_science, spatial_bias, observer_profi... 2022 \n",
"2 [citizen_science, earthworms, flatworms, gut_c... 2022 \n",
"\n",
" label references \\\n",
"0 participative science 001-076-538-431-45X,001-162-706-708-552,004-42... \n",
"1 participative science 000-826-091-294-906,002-078-837-621-902,003-66... \n",
"2 participative science 000-069-184-790-014,001-257-411-314-46X,003-53... \n",
"\n",
" raw_sentences \\\n",
"0 tailor cognitive mapping analysis methods diff... \n",
"1 observer biodiversity citizen_science data. ef... \n",
"2 gut content metabarcoding citizen_science reve... \n",
"\n",
" cleaned_sentences \\\n",
"0 tailor cognitive mapping analysis methods diff... \n",
"1 observer biodiversity citizen_science data. ef... \n",
"2 gut content metabarcoding citizen_science reve... \n",
"\n",
" tokenized_doc \\\n",
"0 [tailor, cognitive, mapping, analysis, methods... \n",
"1 [observer, biodiversity, citizen_science, data... \n",
"2 [gut, content, metabarcoding, citizen_science,... \n",
"\n",
" participatory_keywords \n",
"0 participatory_process \n",
"1 behavior_volunteer_engagement;citizen_science;... \n",
"2 citizen_science;volunteer_reporting "
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"expert_copy.head(3)"
]
},
{
"cell_type": "markdown",
"id": "b9e1da04-1534-4050-890b-b192437bf2ff",
"metadata": {},
"source": [
"### Premiers éléments d'analyses"
]
},
{
"cell_type": "markdown",
"id": "ff9762f9-924e-4e17-ae4e-fcc8ae51b4f9",
"metadata": {},
"source": [
"Dans un premier temps, on souhaite regarder si parmi la liste des mots-clés des experts certains sont plus représentatifs des publications appartenant au champ et si d'autres, au contraire sont plutôt ambiguës. \n",
"\n",
"Pour cela on va regarder la fréquence de distribution de chacun des mots-clés expert au sein des titres+abstracts et regarder comment les résultats obtenus permettent ou pas de discriminer les publications dans ou hors-champ. Si nous ne ferons pas un usage immédiat de ces résultats cela nous donne cependant un indice de saillance de ces mots-clés, et nous permettra plus tard de réduire le bruit qui met en défaut les modèles de langues au moment de la classification."
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "cf6eb010-959c-4971-9e95-a1d7109e4fa2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 6.24 s, sys: 4.81 ms, total: 6.25 s\n",
"Wall time: 6.24 s\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Expert Keyword</th>\n",
" <th>Mean Freq_Part</th>\n",
" <th>Mean Freq_NonPart</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>citizen_science</td>\n",
" <td>0.342975</td>\n",
" <td>0.002191</td>\n",
" </tr>\n",
" <tr>\n",
" <th>89</th>\n",
" <td>participatory_approach</td>\n",
" <td>0.276860</td>\n",
" <td>0.013143</td>\n",
" </tr>\n",
" <tr>\n",
" <th>98</th>\n",
" <td>participatory_process</td>\n",
" <td>0.119835</td>\n",
" <td>0.007667</td>\n",
" </tr>\n",
" <tr>\n",
" <th>101</th>\n",
" <td>participatory_research</td>\n",
" <td>0.115702</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>44</th>\n",
" <td>codesign_process</td>\n",
" <td>0.103306</td>\n",
" <td>0.058050</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>co_design_process</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>79</th>\n",
" <td>onfarm_participatory</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>77</th>\n",
" <td>multiactor_coinnovation_workshop</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>76</th>\n",
" <td>multiactor_co-innovation_workshop</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>68</th>\n",
" <td>innovation_codesigne</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>136 rows × 3 columns</p>\n",
"</div>"
],
"text/plain": [
" Expert Keyword Mean Freq_Part Mean Freq_NonPart\n",
"18 citizen_science 0.342975 0.002191\n",
"89 participatory_approach 0.276860 0.013143\n",
"98 participatory_process 0.119835 0.007667\n",
"101 participatory_research 0.115702 0.000000\n",
"44 codesign_process 0.103306 0.058050\n",
".. ... ... ...\n",
"28 co_design_process 0.000000 0.000000\n",
"79 onfarm_participatory 0.000000 0.000000\n",
"77 multiactor_coinnovation_workshop 0.000000 0.000000\n",
"76 multiactor_co-innovation_workshop 0.000000 0.000000\n",
"68 innovation_codesigne 0.000000 0.000000\n",
"\n",
"[136 rows x 3 columns]"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%time\n",
"kscores=[]\n",
"for k in keywords_df.Keywords.to_list():\n",
" partokenlist = expert_copy['tokenized_doc'][expert_copy.label == 'participative science'].to_list()\n",
" partbm25 = BM25Okapi(partokenlist)\n",
" nonpartokenlist = expert_copy['tokenized_doc'][expert_copy.label == 'non-participative science'].to_list()\n",
" nonpartbm25 = BM25Okapi(nonpartokenlist)\n",
" \n",
" kpartcount = [tklist.count(k) for tklist in partokenlist]\n",
" partbm25_scores = partbm25.get_scores(k)\n",
" kpartmean = sum(kpartcount)/len(partokenlist)\n",
" partbm25mean = sum(partbm25_scores)/len(partbm25_scores)\n",
" \n",
" knonpartcount = [tklist.count(k) for tklist in nonpartokenlist]\n",
" nonpartbm25_scores = nonpartbm25.get_scores(k)\n",
" knonpartmean = sum(knonpartcount)/len(nonpartokenlist)\n",
" nonpartbm25mean = sum(nonpartbm25_scores)/len(nonpartbm25_scores)\n",
" kscores.append([k,kpartmean,knonpartmean])\n",
"\n",
"kwrd_freq_df = pd.DataFrame(data=kscores,columns=['Expert Keyword','Mean Freq_Part','Mean Freq_NonPart'])\n",
"kwrd_freq_df.sort_values(by='Mean Freq_Part',ascending = False)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "080de2e0-7db5-4a1e-bad6-9d8767f82ff1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Axes: >"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQPBJREFUeJzt3X1clHW+//H3MNwrWIkCKhsoprmhbFqsbogWiJrnyBL7QPdG47S2R9duBHXDyptqxQzNU2ux5VpWm7YZD3YPaybLilGBlh5LSzvqQuYNeNNRFAyG4fr94Y+pCTQH1LkYXs/Hg4fM9/rOdz7DcDFvr+s719diGIYhAAAAE/NydwEAAADfh8ACAABMj8ACAABMj8ACAABMj8ACAABMj8ACAABMj8ACAABMj8ACAABMz9vdBVwOTU1NOnLkiIKCgmSxWNxdDgAAuASGYejMmTPq1auXvLwufgzFIwLLkSNHFBER4e4yAABAG3z55Zfq06fPRft4RGAJCgqSdP4JBwcHu7kaXGk2m02bNm3SmDFj5OPj4+5yAFxG7N+dS01NjSIiIhzv4xfjEYGl+TRQcHAwgaUTsNlsCgwMVHBwMH/QAA/D/t05Xcp0DibdAgAA0yOwAAAA02tTYFm5cqUiIyPl7++vuLg4bdu27YJ98/PzNWzYMF1zzTXq0qWLYmNj9eqrrzr1ufvuu2WxWJy+xo4d25bSAACAB3J5Dssbb7yhzMxM5eXlKS4uTitWrFBycrI+//xz9ezZs0X/6667Tg8//LAGDhwoX19fFRYWKiMjQz179lRycrKj39ixY/XSSy85bvv5+bXxKQEAAE/j8hGW5cuXa9q0acrIyNCgQYOUl5enwMBArV69utX+o0aN0k9/+lPdeOON6tevnx544AENHjxY7733nlM/Pz8/hYWFOb6uvfbatj0jAADgcVwKLA0NDdq+fbsSExO/GcDLS4mJiSorK/ve+xuGoeLiYn3++ecaOXKk07aSkhL17NlTAwYM0PTp03Xy5ElXSgMAAB7MpVNCJ06ckN1uV2hoqFN7aGio9u7de8H7nT59Wr1791Z9fb2sVquee+45JSUlObaPHTtWqampioqK0oEDBzRv3jyNGzdOZWVlslqtLcarr69XfX2943ZNTY2k8x+Hs9lsrjwldEDNrzGvNeB52L87F1de56tyHZagoCDt3LlTZ8+eVXFxsTIzM9W3b1+NGjVKkjRp0iRH35iYGA0ePFj9+vVTSUmJ7rjjjhbj5eTkaNGiRS3aN23apMDAwCv2PGAuRUVF7i4BwBXC/t051NXVXXJflwJLSEiIrFarqqurndqrq6sVFhZ2wft5eXkpOjpakhQbG6s9e/YoJyfHEVi+q2/fvgoJCdH+/ftbDSzZ2dnKzMx03G6+Ut6YMWO4cJyHs9vtKikpUVFRkZKSkjRq1KhWj8IB6JhsNptj/+bCcZ6v+QzJpXApsPj6+mro0KEqLi5WSkqKpPMLDxYXF2vmzJmXPE5TU5PTKZ3vOnTokE6ePKnw8PBWt/v5+bX6KSIfHx9+wT1Yfn6+srKyVFlZKen8BPDIyEgtW7ZMqamp7i0OwGXF3/POwZXX2OVPCWVmZurFF1/UmjVrtGfPHk2fPl21tbXKyMiQJE2ZMkXZ2dmO/jk5OSoqKtK//vUv7dmzR8uWLdOrr76qX/7yl5Kks2fPas6cOSovL1dlZaWKi4s1ceJERUdHO33sGZ1bfn6+0tLSFBMTo9LSUq1du1alpaWKiYlRWlqa8vPz3V0iAOAKcnkOS3p6uo4fP6758+erqqpKsbGx2rhxo2Mi7sGDB52WiK6trdWMGTN06NAhBQQEaODAgXrttdeUnp4uSbJarfrkk0+0Zs0anTp1Sr169dKYMWP0+OOPcy0WSDp/GigrK0sTJkxQQUGB7Ha7Tp48qbi4OBUUFCglJUWzZ8/WxIkTOT0EAB7KYhiG4e4i2qumpkbdunXT6dOnmcPigUpKSjR69GiVlZXpxz/+sWw2mzZs2KDx48fLx8dHZWVlGjFihDZv3nzBeVEAOobv7t/wbK68f7OWEEzv6NGjkqSbbrqp1e3N7c39AACeh8AC02uefL179+5Wtze3X2iSNgCg4yOwwPTi4+MVGRmpxYsXq6mpyWlbU1OTcnJyFBUVpfj4eDdVCAC40ggsMD2r1aply5apsLBQKSkpKi8v17lz51ReXq6UlBQVFhYqNzeXCbcA4MGuypVugfZKTU3V+vXrlZWV5bQOVVRUlNavX891WADAwxFY0GGkpqZq4sSJ2rx5s95++22NGzdOo0eP5sgKAHQCBBZ0KFarVQkJCaqtrVVCQgJhBQA6CeawAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA02tTYFm5cqUiIyPl7++vuLg4bdu27YJ98/PzNWzYMF1zzTXq0qWLYmNj9eqrrzr1MQxD8+fPV3h4uAICApSYmKh9+/a1pTQAAOCBXA4sb7zxhjIzM7VgwQLt2LFDQ4YMUXJyso4dO9Zq/+uuu04PP/ywysrK9MknnygjI0MZGRl65513HH2WLl2qZ555Rnl5edq6dau6dOmi5ORkff31121/ZgAAwGO4HFiWL1+uadOmKSMjQ4MGDVJeXp4CAwO1evXqVvuPGjVKP/3pT3XjjTeqX79+euCBBzR48GC99957ks4fXVmxYoUeeeQRTZw4UYMHD9Yrr7yiI0eOqKCgoF1PDgAAeAaXAktDQ4O2b9+uxMTEbwbw8lJiYqLKysq+9/6GYai4uFiff/65Ro4cKUmqqKhQVVWV05jdunVTXFzcJY0JAAA8n7crnU+cOCG73a7Q0FCn9tDQUO3du/eC9zt9+rR69+6t+vp6Wa1WPffcc0pKSpIkVVVVOcb47pjN276rvr5e9fX1jts1NTWSJJvNJpvN5spTQgfU/BrzWgOeh/27c3HldXYpsLRVUFCQdu7cqbNnz6q4uFiZmZnq27evRo0a1abxcnJytGjRohbtmzZtUmBgYDurRUdRVFTk7hIAXCHs351DXV3dJfd1KbCEhITIarWqurraqb26ulphYWEXvJ+Xl5eio6MlSbGxsdqzZ49ycnI0atQox/2qq6sVHh7uNGZsbGyr42VnZyszM9Nxu6amRhERERozZoyCg4NdeUrogGw2m4qKipSUlCQfHx93lwPgMmL/7lyaz5BcCpcCi6+vr4YOHari4mKlpKRIkpqamlRcXKyZM2de8jhNTU2OUzpRUVEKCwtTcXGxI6DU1NRo69atmj59eqv39/Pzk5+fX4t2Hx8ffsE7EV5vwHOxf3cOrrzGLp8SyszM1NSpUzVs2DDdeuutWrFihWpra5WRkSFJmjJlinr37q2cnBxJ50/fDBs2TP369VN9fb02bNigV199Vc8//7wkyWKx6MEHH9QTTzyh/v37KyoqSo8++qh69erlCEUAAKBzczmwpKen6/jx45o/f76qqqoUGxurjRs3OibNHjx4UF5e33z4qLa2VjNmzNChQ4cUEBCggQMH6rXXXlN6erqjz9y5c1VbW6t7771Xp06d0m233aaNGzfK39//MjxFAADQ0VkMwzDcXUR71dTUqFu3bjp9+jRzWDoBm82mDRs2aPz48RwyBjwM+3fn4sr7N2sJAQAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwoEOx2+3asmWL3n33XW3ZskV2u93dJQEArgICCzqM/Px8RUdHKykpScuXL1dSUpKio6OVn5/v7tIAAFcYgQUdQn5+vtLS0hQTE6PS0lKtXbtWpaWliomJUVpaGqEFADwcgQWmZ7fblZWVpQkTJqigoEBxcXEKCAhQXFycCgoKNGHCBM2ePZvTQwDgwQgsML3S0lJVVlZq3rx58vJy/pX18vJSdna2KioqVFpa6qYKAQBXGoEFpnf06FFJ0k033dTq9ub25n4AAM9DYIHphYeHS5J2797d6vbm9uZ+AADPQ2CB6cXHxysyMlKLFy9WU1OT07ampibl5OQoKipK8fHxbqoQAHClEVhgelarVcuWLVNhYaFSUlJUXl6uc+fOqby8XCkpKSosLFRubq6sVqu7SwUAXCHe7i4AuBSpqalav369srKyNHLkSEd7VFSU1q9fr9TUVDdWBwC40ggs6DBSU1M1ceJEbd68WW+//bbGjRun0aNHc2QFADoBAgs6FKvVqoSEBNXW1iohIYGwAgCdBHNYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6bUpsKxcuVKRkZHy9/dXXFyctm3bdsG+L774ouLj43Xttdfq2muvVWJiYov+d999tywWi9PX2LFj21IaAADwQC4HljfeeEOZmZlasGCBduzYoSFDhig5OVnHjh1rtX9JSYkmT56szZs3q6ysTBERERozZowOHz7s1G/s2LE6evSo42vt2rVte0YAAMDjuBxYli9frmnTpikjI0ODBg1SXl6eAgMDtXr16lb7//nPf9aMGTMUGxurgQMHatWqVWpqalJxcbFTPz8/P4WFhTm+rr322rY9IwAA4HFcCiwNDQ3avn27EhMTvxnAy0uJiYkqKyu7pDHq6upks9l03XXXObWXlJSoZ8+eGjBggKZPn66TJ0+6UhoAAPBg3q50PnHihOx2u0JDQ53aQ0NDtXfv3ksa43e/+5169erlFHrGjh2r1NRURUVF6cCBA5o3b57GjRunsrIyWa3WFmPU19ervr7ecbumpkaSZLPZZLPZXHlK6ICaX2Nea8DzsH93Lq68zi4FlvZasmSJ1q1bp5KSEvn7+zvaJ02a5Pg+JiZGgwcPVr9+/VRSUqI77rijxTg5OTlatGhRi/ZNmzYpMDDwyhQP0ykqKnJ3CQCuEPbvzqGuru6S+7oUWEJCQmS1WlVdXe3UXl1drbCwsIveNzc3V0uWLNE//vEPDR48+KJ9+/btq5CQEO3fv7/VwJKdna3MzEzH7ZqaGsdk3uDgYBeeEToim82moqIiJSUlycfHx93lALiM2L87l+YzJJfCpcDi6+uroUOHqri4WCkpKZLkmEA7c+bMC95v6dKl+v3vf6933nlHw4YN+97HOXTokE6ePKnw8PBWt/v5+cnPz69Fu4+PD7/gnQivN+C52L87B1deY5c/JZSZmakXX3xRa9as0Z49ezR9+nTV1tYqIyNDkjRlyhRlZ2c7+j/55JN69NFHtXr1akVGRqqqqkpVVVU6e/asJOns2bOaM2eOysvLVVlZqeLiYk2cOFHR0dFKTk52tTwAAOCBXJ7Dkp6eruPHj2v+/PmqqqpSbGysNm7c6JiIe/DgQXl5fZODnn/+eTU0NCgtLc1pnAULFmjhwoWyWq365JNPtGbNGp06dUq9evXSmDFj9Pjjj7d6FAUAAHQ+bZp0O3PmzAueAiopKXG6XVlZedGxAgIC9M4777SlDAAA0EmwlhAAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADC9NgWWlStXKjIyUv7+/oqLi9O2bdsu2PfFF19UfHy8rr32Wl177bVKTExs0d8wDM2fP1/h4eEKCAhQYmKi9u3b15bSAACAB3I5sLzxxhvKzMzUggULtGPHDg0ZMkTJyck6duxYq/1LSko0efJkbd68WWVlZYqIiNCYMWN0+PBhR5+lS5fqmWeeUV5enrZu3aouXbooOTlZX3/9ddufGQAA8BguB5bly5dr2rRpysjI0KBBg5SXl6fAwECtXr261f5//vOfNWPGDMXGxmrgwIFatWqVmpqaVFxcLOn80ZUVK1bokUce0cSJEzV48GC98sorOnLkiAoKCtr15AAAgGdwKbA0NDRo+/btSkxM/GYALy8lJiaqrKzsksaoq6uTzWbTddddJ0mqqKhQVVWV05jdunVTXFzcJY8JAAA8m7crnU+cOCG73a7Q0FCn9tDQUO3du/eSxvjd736nXr16OQJKVVWVY4zvjtm87bvq6+tVX1/vuF1TUyNJstlsstlsl/Zk0GE1v8a81oDnYf/uXFx5nV0KLO21ZMkSrVu3TiUlJfL392/zODk5OVq0aFGL9k2bNikwMLA9JaIDKSoqcncJAK4Q9u/Ooa6u7pL7uhRYQkJCZLVaVV1d7dReXV2tsLCwi943NzdXS5Ys0T/+8Q8NHjzY0d58v+rqaoWHhzuNGRsb2+pY2dnZyszMdNyuqalxTOYNDg525SmhA7LZbCoqKlJSUpJ8fHzcXQ6Ay4j9u3NpPkNyKVwKLL6+vho6dKiKi4uVkpIiSY4JtDNnzrzg/ZYuXarf//73eueddzRs2DCnbVFRUQoLC1NxcbEjoNTU1Gjr1q2aPn16q+P5+fnJz8+vRbuPjw+/4J0Irzfgudi/OwdXXmOXTwllZmZq6tSpGjZsmG699VatWLFCtbW1ysjIkCRNmTJFvXv3Vk5OjiTpySef1Pz58/X6668rMjLSMS+la9eu6tq1qywWix588EE98cQT6t+/v6KiovToo4+qV69ejlAEAAA6N5cDS3p6uo4fP6758+erqqpKsbGx2rhxo2PS7MGDB+Xl9c2Hj55//nk1NDQoLS3NaZwFCxZo4cKFkqS5c+eqtrZW9957r06dOqXbbrtNGzdubNc8FwAA4DkshmEY7i6ivWpqatStWzedPn2aOSydgM1m04YNGzR+/HgOGQMehv27c3Hl/Zu1hAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOm1KbCsXLlSkZGR8vf3V1xcnLZt23bBvp9++qnuuusuRUZGymKxaMWKFS36LFy4UBaLxelr4MCBbSkNAAB4IJcDyxtvvKHMzEwtWLBAO3bs0JAhQ5ScnKxjx4612r+urk59+/bVkiVLFBYWdsFxf/jDH+ro0aOOr/fee8/V0gAAgIdyObAsX75c06ZNU0ZGhgYNGqS8vDwFBgZq9erVrfa/5ZZb9NRTT2nSpEny8/O74Lje3t4KCwtzfIWEhLhaGgAA8FAuBZaGhgZt375diYmJ3wzg5aXExESVlZW1q5B9+/apV69e6tu3r37xi1/o4MGD7RoPAAB4Dm9XOp84cUJ2u12hoaFO7aGhodq7d2+bi4iLi9PLL7+sAQMG6OjRo1q0aJHi4+O1e/duBQUFtehfX1+v+vp6x+2amhpJks1mk81ma3Md6BiaX2Nea8DzsH93Lq68zi4Flitl3Lhxju8HDx6suLg4XX/99frLX/6ie+65p0X/nJwcLVq0qEX7pk2bFBgYeEVrhXkUFRW5uwQAVwj7d+dQV1d3yX1dCiwhISGyWq2qrq52aq+urr7ohFpXXXPNNbrhhhu0f//+VrdnZ2crMzPTcbumpkYREREaM2aMgoODL1sdMCebzaaioiIlJSXJx8fH3eUAuIzYvzuX5jMkl8KlwOLr66uhQ4equLhYKSkpkqSmpiYVFxdr5syZLhV5MWfPntWBAwf0q1/9qtXtfn5+rU7g9fHx4Re8E+H1BjwX+3fn4Mpr7PIpoczMTE2dOlXDhg3TrbfeqhUrVqi2tlYZGRmSpClTpqh3797KycmRdH6i7meffeb4/vDhw9q5c6e6du2q6OhoSdLs2bP1b//2b7r++ut15MgRLViwQFarVZMnT3a1PAAA4IFcDizp6ek6fvy45s+fr6qqKsXGxmrjxo2OibgHDx6Ul9c3Hz46cuSIfvSjHzlu5+bmKjc3VwkJCSopKZEkHTp0SJMnT9bJkyfVo0cP3XbbbSovL1ePHj3a+fQAAIAnaNOk25kzZ17wFFBzCGkWGRkpwzAuOt66devaUgYAAOgkWEsIAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFHYrdbteWLVv07rvvasuWLbLb7e4uCQBwFRBY0GHk5+crOjpaSUlJWr58uZKSkhQdHa38/Hx3lwYAuMIILOgQ8vPzlZaWppiYGJWWlmrt2rUqLS1VTEyM0tLSCC0A4OEILDA9u92urKwsTZgwQQUFBYqLi1NAQIDi4uJUUFCgCRMmaPbs2ZweAgAPRmCB6ZWWlqqyslLz5s2TYRhOc1gMw1B2drYqKipUWlrq7lIBAFcIgQWmd/ToUUnSgQMHWp3D8q9//cupHwDA8xBYYHrh4eGSpF/96letzmH51a9+5dQPAOB5vN1dAPB9RowYIW9vb3Xv3l35+fkyDEMnT55UXFyc8vPz1adPH508eVIjRoxwd6kAgCuEIywwvQ8++ECNjY2qrq5WamqqysvLde7cOZWXlys1NVXV1dVqbGzUBx984O5SAQBXCIEFptc8N+W1117Trl27NHLkSE2ePFkjR47U7t279dprrzn1AwB4HgILTK95bkq/fv20f/9+FRUVKTMzU0VFRdq3b5/69u3r1A8A4HkILDC9+Ph4RUZGavHixbJYLEpISNDIkSOVkJAgi8WinJwcRUVFKT4+3t2lAgCuEAILTM9qtWrZsmUqLCxUSkqK0xyWlJQUFRYWKjc3V1ar1d2lAgCuED4lhA4hNTVV69evV1ZWlkaOHOloj4qK0vr165WamurG6gAAVxqBBR1GamqqJk6cqM2bN+vtt9/WuHHjNHr0aI6sAEAnQGBBh2K1WpWQkKDa2lolJCQQVgCgk2AOCzoUu93utJYQCx4CQOdAYEGHkZ+f3+paQvn5+e4uDQBwhRFY0CHk5+crLS2t1bWE0tLSCC0A4OEILDA9u92urKwsTZgwQQUFBYqLi1NAQIDi4uJUUFCgCRMmaPbs2ZweAgAP1qbAsnLlSkVGRsrf319xcXHatm3bBft++umnuuuuuxQZGSmLxaIVK1a0e0x0LqWlpaqsrNS8efPk5eX8K+vl5aXs7GxVVFSotLTUTRUCAK40lwPLG2+8oczMTC1YsEA7duzQkCFDlJycrGPHjrXav66uTn379tWSJUsUFhZ2WcZE59K8RtBNN93U6vbmdtYSAgDP5XJgWb58uaZNm6aMjAwNGjRIeXl5CgwM1OrVq1vtf8stt+ipp57SpEmT5Ofnd1nGROfSvEbQ7t27W93e3M5aQgDguVwKLA0NDdq+fbsSExO/GcDLS4mJiSorK2tTAVdiTHiWb68l1NTU5LStqamJtYQAoBNw6cJxJ06ckN1uV2hoqFN7aGio9u7d26YC2jJmfX296uvrHbdramokSTabTTabrU11wNyefPJJTZo0Sf/+7/+urKwsnTt3Tu+9956WLVumDRs2aN26dWpqamoRaAB0LM1/w/lb3jm48jp3yCvd5uTkaNGiRS3aN23apMDAQDdUhCvNz89Pc+fO1UsvvaTbb7/d0R4aGqq5c+fKz89PGzZscGOFAC6noqIid5eAq6Curu6S+7oUWEJCQmS1WlVdXe3UXl1dfcEJtVdizOzsbGVmZjpu19TUKCIiQmPGjFFwcHCb6oD5jR8/XgsXLlRJSYmKioqUlJSkUaNGcXl+wIPYbDbH/u3j4+PucnCFNZ8huRQuBRZfX18NHTpUxcXFSklJkXR+DkFxcbFmzpzpUpHtGdPPz6/VCbw+Pj78gns4Hx8f3XHHHaqvr9cdd9zB6w14KP6edw6uvMYunxLKzMzU1KlTNWzYMN16661asWKFamtrlZGRIUmaMmWKevfurZycHEnnJ9V+9tlnju8PHz6snTt3qmvXroqOjr6kMQEAQOfmcmBJT0/X8ePHNX/+fFVVVSk2NlYbN250TJo9ePCg08W9jhw5oh/96EeO27m5ucrNzVVCQoJKSkouaUwAANC5WQzDMNxdRHvV1NSoW7duOn36NHNYOgGbzaYNGzZo/PjxHDIGPAz7d+fiyvs3awkBAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7CgQ7Hb7dqyZYveffddbdmyRXa73d0lAQCuAgILOoz8/HxFR0crKSlJy5cvV1JSkqKjo5Wfn+/u0gAAVxiBBR1Cfn6+0tLSFBMTo9LSUq1du1alpaWKiYlRWloaoQUAPByBBaZnt9uVlZWlCRMmqKCgQHFxcQoICFBcXJwKCgo0YcIEzZ49m9NDAODBCCwwvdLSUlVWVmrevHlO61RJkpeXl7Kzs1VRUaHS0lI3VQgAuNIILDC9o0ePSpJuuummVrc3tzf3AwB4HgILTC88PFyStHv37la3N7c39wMAeB4CC0wvPj5ekZGRWrx4sZqampy2NTU1KScnR1FRUYqPj3dThQCAK83b3QUA38dqtWrZsmVKS0vTv/3bv8nX11cHDhzQyy+/rIaGBr399ttav369rFaru0sFAFwhBBZ0CKmpqRo2bJg2bNjgaNu1a5ck6ZZbblFqaqq7SgMAXAUEFnQIKSkp+vDDD+Xr66vU1FQFBgaqrq5O+fn5+vDDD5WSkqKCggJ3lwkAuEIILDC9c+fO6a9//at8fX115swZWSwWbdiwQePHj9eaNWsUFBSkv/71rzp37pwCAgLcXS4A4Apg0i1Mb86cOZKkzMxMWa1Wp7WErFarHnzwQad+AADPwxEWmN6+ffskSX369FF0dLQqKyslScuXL1dkZKSysrKc+gEAPA9HWGB6/fv3lyTNnDmz1bWE7rvvPqd+AADPYzEMw3B3Ee1VU1Ojbt266fTp0woODnZ3ObjMzp49q6CgIFksFtXV1clqtTrmsNjtdgUGBsowDJ05c0Zdu3Z1d7kA2sFmszn2bx8fH3eXgyvMlfdvjrDA9D766CNJkmEYCg4O1pgxY7R8+XKNGTNGwcHBas7czf0AAJ6HOSwwveY1gqKiolRRUaGSkhKn7c3trCUEAJ6LwALTa14jqKKiQj179tTAgQN14sQJhYSEaO/evaqoqHDqBwDwPAQWmF5cXJwkydfXV19++aXTdVgMw1BQUJAaGhoc/QAAnoc5LDC9P/7xj5KkhoYGpaWlqby8XOfOnVN5ebnS0tLU0NDg1A8A4HkILDC9AwcOSJJWrVqlXbt2aeTIkZo8ebJGjhyp3bt368UXX3TqBwDwPAQWmF6/fv0knf+U0P79+1VUVKTMzEwVFRVp3759ampqcuoHAPA8XIcFptfQ0KAuXbqoe/fuOnTokAzDcMxhsVgs6tOnj06ePKna2lr5+vq6u1wA7cB1WDoXrsMCj+Lr66tZs2apurpaffr00apVq/TVV19p1apV6tOnj6qrqzVr1izCCtDB2e12p7XC7Ha7u0uCiXCEBR3G3Llz9fTTT6uxsdHR5u3trVmzZmnp0qVurAxAe+Xn5ysrK8uxVpgkRUZGatmyZUpNTXVfYbiiOMICj7R06VLV1tYqNzdX48ePV25urmprawkrQAeXn5+vtLS0VtcKS0tLU35+vrtLhAlwhAUdDue4Ac9ht9sVHR2tmJgYFRQUyG63O/Zvq9WqlJQU7d69W/v27ZPVanV3ubjMOMICAOgQSktLVVlZqXnz5snLy/ktycvLS9nZ2aqoqFBpaambKoRZEFgAAG7TvAbYTTfd1Or25nbWCgOBBQDgNs1rgO3evbvV7c3trBUGAgsAwG3i4+MVGRmpxYsXOy4C2aypqUk5OTmKiopSfHy8myqEWbQpsKxcuVKRkZHy9/dXXFyctm3bdtH+b775pgYOHCh/f3/FxMRow4YNTtvvvvtuWSwWp6+xY8e2pTR4uIaGBj3zzDN64YUX9MwzzzjWEQLQMVmtVi1btkyFhYVKSUlxWissJSVFhYWFys3NZcItJMNF69atM3x9fY3Vq1cbn376qTFt2jTjmmuuMaqrq1vt//777xtWq9VYunSp8dlnnxmPPPKI4ePjY+zatcvRZ+rUqcbYsWONo0ePOr6++uqrS67p9OnThiTj9OnTrj4ddCBz5swxvL29DUmOL29vb2POnDnuLg1AO7311ltGZGSk0/4dFRVlvPXWW+4uDVeQK+/fLn+sOS4uTrfccov+8Ic/SDp/yC4iIkL33XefHnrooRb909PTVVtbq8LCQkfbj3/8Y8XGxiovL0/S+SMsp06dUkFBQRsiFx9r7gzmzp2rp556SqGhoVq0aJH8/PxUX1+vBQsWqLq6WnPmzOF6LEAHZ7fbtXnzZr399tsaN26cRo8ezZEVD+fK+7e3KwM3NDRo+/btys7OdrR5eXkpMTFRZWVlrd6nrKxMmZmZTm3JycktwklJSYl69uypa6+9VrfffrueeOIJde/evdUx6+vrVV9f77hdU1Mj6fz1OWw2mytPCR1AQ0ODnn76afXs2VMVFRUyDENFRUVKSkrSlClTFBkZqaeffloLFizg8vxABzdixAjV1tZqxIgRampqajGvBZ7FlfdslwLLiRMnZLfbFRoa6tQeGhqqvXv3tnqfqqqqVvtXVVU5bo8dO1apqamKiorSgQMHNG/ePI0bN05lZWWtpuucnBwtWrSoRfumTZsUGBjoylNCB/C3v/1NjY2NSktL06ZNmxztRUVFkqS77rpLzz//vO6//379+7//u7vKBHAZNe/f8Gx1dXWX3NelwHKlTJo0yfF9TEyMBg8erH79+qmkpER33HFHi/7Z2dlOR21qamoUERGhMWPGcErIA73zzjuSpIceekhhYWGy2WyOIyw+Pj6KjY3V888/Lz8/P40fP97N1QJoj+/u3/BszWdILoVLgSUkJERWq1XV1dVO7dXV1QoLC2v1PmFhYS71l6S+ffsqJCRE+/fvbzWw+Pn5yc/Pr0W7j48Pv+Ae6IYbbpB0Prj8+te/drQ3v97NgeaGG27g9Qc8BH/POwdXXmOXPtbs6+uroUOHqri42NHW1NSk4uJiDR8+vNX7DB8+3Km/dP5Q34X6S9KhQ4d08uRJLhQESdKMGTPk7e2tRx55xGmlZklqbGzU/Pnz5e3trRkzZripQgDAlebydVgyMzP14osvas2aNdqzZ4+mT5+u2tpaZWRkSJKmTJniNCn3gQce0MaNG7Vs2TLt3btXCxcu1EcffaSZM2dKks6ePas5c+aovLxclZWVKi4u1sSJExUdHa3k5OTL9DTRkfn6+mrWrFmqrq5Wnz59tGrVKn311VdatWqV+vTpo+rqas2aNYsJtwDgwVyew5Kenq7jx49r/vz5qqqqUmxsrDZu3OiYWHvw4EGnBaxGjBih119/XY888ojmzZun/v37q6CgwLE+hNVq1SeffKI1a9bo1KlT6tWrl8aMGaPHH3+81dM+6JyaP7L89NNPOx1J8fb25iPNANAJuHwdFjPiOiydR0NDg5599ln985//1O2336777ruPIyuAh+A6LJ2PK+/fBBZ0ODabTRs2bND48eOZlAd4iPz8fGVlZamystLRFhkZqWXLlik1NdV9heGKcuX9m8UPAQBulZ+fr7S0NMXExKi0tFRr165VaWmpYmJilJaWpvz8fHeXCBMgsAAA3MZutysrK0sTJkxQQUGB4uLiFBAQoLi4OBUUFGjChAmaPXu27Ha7u0uFmxFYAABuU1paqsrKSs2bN8/pAxvS+aVfsrOzVVFRodLSUjdVCLMgsAAA3Obo0aOS5Pjk6Hc1tzf3Q+dFYEGH0tDQoGeeeUYvvPCCnnnmGTU0NLi7JADt0HyB0N27d7e6vbmdC4mCwIIOY+7cuerSpYtmz56tDRs2aPbs2erSpYvmzp3r7tIAtFF8fLwiIyO1ePHiFiszNzU1KScnR1FRUYqPj3dThTALAgs6hLlz5+qpp55S9+7dlZeXp5deekl5eXnq3r27nnrqKUIL0EFZrVYtW7ZMhYWFSklJUXl5uc6dO6fy8nKlpKSosLBQubm5XI8FXIcF5tfQ0KAuXbqoe/fuOnTokAzDcFyHxWKxqE+fPjp58qRqa2u5iBzQQbV2HZaoqCjl5uZyHRYPxnVY4FGee+45NTY26oknnpC3t/NqEt7e3nrsscfU2Nio5557zk0VAmiv1NRU7d+/X0VFRcrMzFRRUZH27dtHWIGDy2sJAVfbgQMHJEkTJkxodXtze3M/AB2T1WpVQkKCamtrlZCQwGkgOOEIC0yvX79+kqTCwsJWtze3N/cD0DHZ7XZt2bJF7777rrZs2cLF4uCEOSwwPeawAJ6PtYQ6J1fevzklBFOpq6vT3r17W7T//Oc/1yuvvKLQ0FBl/PrXqjP8VfrBB3pp1Sp99dVXmjJlygWv4zBw4EAFBgZe6dIBtFHzWkITJkzQq6++qkOHDqlPnz5aunSp0tLStH79ekILOMICc9mxY4eGDh16Wcfcvn27br755ss6JoDLw263Kzo6WjExMSooKJDdbnccQbVarUpJSdHu3bu1b98+5rR4II6woMMaOHCgtm/ffsHtDQ0NWvmnV/RW6S7dFR+j394z5XtPAw0cOPBylwngMmleS2jt2rXy8vJymrfSvJbQiBEjVFpaqlGjRrmvULgdgQWmEhgY+L1HQ/zD+6v0+XJlTf+xYq/vfpUqA3AlfHstoW9Puu3SpYtGjx7NWkJwILAAANymeY2gP/zhD/rjH//omHS7fPlyRUZG6t5773Xqh86LwAIAcJv4+Hj17NlT2dnZuvPOOzVr1izt27dP/fv316ZNmzRv3jz17NmTtYRAYAEAuFfzZz/++c9/6u9//7ujPSAgwF0lwYS4cBwAwG1KS0t1/PjxVrdZLBZJ0rFjx1RaWno1y4IJEVgAAG5z+PBhSdK4ceN0+vRpp7WETp06pXHjxjn1Q+dFYAEAuE3z0ZXU1FT5+PgoISFBI0eOVEJCgnx8fJSSkuLUD50XgQUA4DY9evSQdP5qt01NTU7bmpqaVFBQ4NQPnReBBQDgNr1795Ykbdy4USkpKSovL9e5c+dUXl6ulJQUbdy40akfOi8+JQQAcJv4+HhFRkYqJCREn3zyiUaOHOnYFhkZqaFDh+rkyZN8rBkEFgCA+1itVi1btkx33XWX41NBzb744gtVVlbqrbfeYh0hcEoIAOBe5eXlktQisHh5eTltR+dGYAEAuE1DQ4OefvpphYaGqq6uzuljzbW1tQoNDdXTTz+thoYGd5cKN+OUEK6qihO1qq1vbNcYB47XOv719m7/r3AXP29FhXRp9zgAXPfcc8+psbFRTzzxRIv92dvbW4899ph+85vf6LnnntODDz7oniJhCgQWXDUVJ2o1Orfkso2XtX7XZRtr8+xRhBbADQ4cOCDp/OmgqKgoffnll5LOL34YERGh+fPnO/VD50VgwVXTfGRlRXqsont2bfs45+pVWFKmCaOGq0uAX7tq2n/srB58Y2e7j/oAaJt+/fpJkn7961+32Pbll19q2rRpTv3QeRFYcNVF9+yqm3p3a/P9bTabqnpIN19/rXx8fC5jZQCutt/85jeaNWvWJfVD58akWwCA25SUlDi+9/b2VmxsrAYMGKDY2FinOS3f7ofOiSMsAAC3Wb58uaTz12NpbGzUzp07nbZbrVbZ7XYtX77csRAiOieOsAAA3KZ5kq3dbm91e3N7cz90XgQWAIDb9OrVy/F9z549lZeXp5deekl5eXnq2bNnq/3QOXFKCFeVxbtGFTWfy8u/7Z8Samxs1JHGI9rz1Z52X4elouasLN417RoDQNsFBAQ4vr/55ps1aNAgHT58WP369dPNN9/sWPzw2/3QObXpr/3KlSv11FNPqaqqSkOGDNGzzz6rW2+99YL933zzTT366KOqrKxU//799eSTT2r8+PGO7YZhaMGCBXrxxRd16tQp/eQnP9Hzzz+v/v37t6U8mJjPNVs1b9viyzLWcxufuyzj+Fxzh6Tx39sPwOW3f/9+x/cbN250BJSL9UPn5HJgeeONN5SZmam8vDzFxcVpxYoVSk5O1ueff+50+K7ZBx98oMmTJysnJ0cTJkzQ66+/rpSUFO3YsUM33XSTJGnp0qV65plntGbNGkVFRenRRx9VcnKyPvvsM/n7+7f/WcI0bKfitOzOn6tfO67D0tjYqPffe18/ue0n7T7CcuDYWd3/Zy5IBVwNdXV12rt3r1PbheaufJfdbteOHTtatA8cOFCBgYGXpT6Ym8UwDMOVO8TFxemWW27RH/7wB0lSU1OTIiIidN999+mhhx5q0T89PV21tbUqLCx0tP34xz9WbGys8vLyZBiGevXqpaysLM2ePVuSdPr0aYWGhurll1/WpEmTvremmpoadevWTadPn1ZwcLArTwdX0e7DpzXh2fdUeN9t7b4Oy4YNGzR+/Ph2X4flctUE4PuX3vhs106ljxt1WR/zjbdLNCgm9oLbWXrD3Fx5/3bpv6cNDQ3avn27srOzHW1eXl5KTExUWVlZq/cpKytTZmamU1tycrIKCgokSRUVFaqqqlJiYqJje7du3RQXF6eysrJWA0t9fb3q6+sdt2tqzs9BsNlsstlsrjwlXEVnzp1/zT4++JUaG1v/o3buXJ0qD+y76Dj2Rrt27TqgMyqR1fv7l5yP7NdfAQGt/w9s//9fl6ixsZHfHaAd9hw9o4kvvCOL95kL9rGfO6vQX05zajOaGlXz/tr/f8si7x4/kLVLiOy1J9R4/KCk8/+nDv7JZFm8Wr5lzdm8Xdbyzy/4mEZjkDbNHKfI7oQWM3Ll765LgeXEiROy2+0KDQ11ag8NDW1xmK9ZVVVVq/2rqqoc25vbLtTnu3JycrRo0aIW7Zs2beLQoImVVVskWfXwXz+7YJ/6qv2qWvPgZX3csKkr5BcWfdE+H5a9py+Y0we0WVm1RT7XbJVfj+KLdxzUsqnnmO/un6cl+Uj69uX4P7zQI1/04eqP36GSkkD1ZP82pbq6ukvu2yE/JZSdne101KampkYREREaM2YMp4RM7Me1DYrZc0x9e3RRgE/rR0bOnRusyp/FXHSc80dYdikmJqbdR1gkqYuflf99Ae3049oGRe3qrW5BafK/wH75df3XOnroYKvb3v7rW3p/c7GajCZHm5fFqp+Mvl3jJt51wccN7/MD+ftdeK5jeFAP3dzr+kt8Frjams+QXAqXAktISIisVquqq6ud2qurqxUWFtbqfcLCwi7av/nf6upqhYeHO/WJjY1tdUw/Pz/5+bVc9M7Hx4e1ZUws9Bof/WJ41Pf06q7hAyMu2sNmsylIdRo/fhSvN2ASodf46DfxQ7+/4wW6zJo4VQ0NDXr22Wf1z3/+U7fffrvuu+8++fr6Xt5CYSqu/A136cJxvr6+Gjp0qIqLvznk19TUpOLiYg0fPrzV+wwfPtypvyQVFRU5+kdFRSksLMypT01NjbZu3XrBMQEAnsfX11f333+/7r33Xt1///2EFThx+ZRQZmampk6dqmHDhunWW2/VihUrVFtbq4yMDEnSlClT1Lt3b+Xk5EiSHnjgASUkJGjZsmW68847tW7dOn300Ud64YUXJEkWi0UPPvignnjiCfXv39/xseZevXopJSXl8j1TAADQYbkcWNLT03X8+HHNnz9fVVVVio2N1caNGx2TZg8ePCgvr28O3IwYMUKvv/66HnnkEc2bN0/9+/dXQUGB4xoskjR37lzV1tbq3nvv1alTp3Tbbbdp48aNXIMFAABIasN1WMyI67B0LpfzOiwAzIX9u3Nx5f2bxQ8BAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpuXxpfjNqvlivK8tUo+Oy2Wyqq6tTTU0NV8IEPAz7d+fS/L59KRfd94jAcubMGUlSRESEmysBAACuOnPmjLp163bRPh6xllBTU5OOHDmioKAgWSwWd5eDK6ympkYRERH68ssvWTsK8DDs352LYRg6c+aMevXq5bRwcms84giLl5eX+vTp4+4ycJUFBwfzBw3wUOzfncf3HVlpxqRbAABgegQWAABgegQWdDh+fn5asGCB/Pz83F0KgMuM/RsX4hGTbgEAgGfjCAsAADA9AgsAADA9AgsAADA9AgsAADA9Aksncffdd8tiseg///M/W2z77W9/K4vForvvvvvqF/YdL7/8siwWS4uvVatWua2mhQsXOurw9vZWZGSkZs2apbNnz7Z73NjY2MtTJDwC+2nbNe+n3/3Z7dy5UxaLRZWVlZf18SIjIx3Pu0uXLrr55pv15ptvXpZxV6xY0f4CPRCBpROJiIjQunXrdO7cOUfb119/rddff10/+MEP3FiZs+DgYB09etTp6xe/+EWLfg0NDVetph/+8Ic6evSoKisr9eSTT+qFF15QVlZWm8YyDEONjY2XuUJ4CvbTtvP399ef/vQn7du376o83mOPPaajR4/qf/7nf3TLLbcoPT1dH3zwQZvGupo/p46KwNKJ3HzzzYqIiFB+fr6jLT8/Xz/4wQ/0ox/9yKlvU1OTcnJyFBUVpYCAAA0ZMkTr1693bLfb7brnnnsc2wcMGKD/+q//chrj7rvvVkpKinJzcxUeHq7u3bvrt7/9rWw220XrtFgsCgsLc/oKCAhwHJFYtWqVoqKi5O/vL0k6deqUfv3rX6tHjx4KDg7W7bffro8//thpzCVLlig0NFRBQUG655579NBDD7l0dMPb21thYWHq06eP0tPT9Ytf/EJ/+9vfJEmvvvqqhg0bpqCgIIWFhennP/+5jh075rhvSUmJLBaL3n77bQ0dOlR+fn567bXXtGjRIn388ceO/6W9/PLLl1wPPBf7adv30wEDBmj06NF6+OGHL9pvy5YtuvXWW+Xn56fw8HA99NBDTv+JGDVqlO6//37NnTtX1113ncLCwrRw4cIW4zTv8zfccINWrlypgIAA/fd//7dLP/ff//736tWrlwYMGKBRo0bpiy++0KxZsxx/F/ANAksn8x//8R966aWXHLdXr16tjIyMFv1ycnL0yiuvKC8vT59++qlmzZqlX/7yl9qyZYuk838o+/TpozfffFOfffaZ5s+fr3nz5ukvf/mL0zibN2/WgQMHtHnzZq1Zs0Yvv/xyu96Y9+/fr7feekv5+fnauXOnJOlnP/uZjh07prffflvbt2/XzTffrDvuuENfffWVJOkvf/mLFi5cqMWLF+ujjz5SeHi4nnvuuTbXIEkBAQGO/xHZbDY9/vjj+vjjj1VQUKDKyspWD9s/9NBDWrJkifbs2aOkpCRlZWU5jtwcPXpU6enp7aoJnoP9tO376ZIlS/TWW2/po48+anX74cOHNX78eN1yyy36+OOP9fzzz+tPf/qTnnjiCad+a9asUZcuXbR161YtXbpUjz32mIqKii74uN7e3vLx8VFDQ8Ml/9yLi4v1+eefq6ioSIWFhcrPz1efPn0cR26OHj3q8vP3aAY6halTpxoTJ040jh07Zvj5+RmVlZVGZWWl4e/vbxw/ftyYOHGiMXXqVMMwDOPrr782AgMDjQ8++MBpjHvuuceYPHnyBR/jt7/9rXHXXXc5Peb1119vNDY2Otp+9rOfGenp6Rcc46WXXjIkGV26dHF8hYaGGoZhGAsWLDB8fHyMY8eOOfqXlpYawcHBxtdff+00Tr9+/Yw//vGPhmEYxvDhw40ZM2Y4bY+LizOGDBlywTq+bcGCBU59P/roIyMkJMRIS0trtf+HH35oSDLOnDljGIZhbN682ZBkFBQUXHRcgP308uynkyZNMm6//XbDMAzjf/7nfwxJRkVFhWEYhjFv3jxjwIABRlNTk+O+K1euNLp27WrY7XbDMAwjISHBuO2225zGv+WWW4zf/e53jtvXX3+98fTTTxuGYRj19fXG4sWLDUlGYWFhq/W19nMPDQ016uvrnfp9e1w484jVmnHpevTooTvvvFMvv/yyDMPQnXfeqZCQEKc++/fvV11dnZKSkpzaGxoanA5Jr1y5UqtXr9bBgwd17tw5NTQ0tDh8+8Mf/lBWq9VxOzw8XLt27bpojUFBQdqxY4fj9reXHL/++uvVo0cPx+2PP/5YZ8+eVffu3Z3GOHfunA4cOCBJ2rNnT4uJeMOHD9fmzZsvWse37dq1S127dpXdbldDQ4PuvPNO/eEPf5Akbd++XQsXLtTHH3+s//u//1NTU5Mk6eDBgxo0aJBjjGHDhl3y46FzYz89z9X9tNkTTzyhG2+8UZs2bVLPnj2dtu3Zs0fDhw93Ot3yk5/8RGfPntWhQ4cc84QGDx7sdL/w8HCnU72S9Lvf/U6PPPKIvv76a3Xt2lVLlizRnXfeKenSfu4xMTHy9fV1+fl1VgSWTug//uM/NHPmTEnnd6rvav70y9///nf17t3baVvz+h7r1q3T7NmztWzZMg0fPlxBQUF66qmntHXrVqf+Pj4+TrctFovjDf1CvLy8FB0d3eq2Ll26tKg1PDxcJSUlLfpec801F30cVwwYMEB/+9vf5O3trV69ejn+yNTW1io5OVnJycn685//rB49eujgwYNKTk5uMYnuu7UDF8N+2nb9+vXTtGnT9NBDD+lPf/pTm8a4lJ/JnDlzdPfdd6tr164KDQ11hKBL/bnzN8E1BJZOaOzYsWpoaJDFYlFycnKL7YMGDZKfn58OHjyohISEVsd4//33NWLECM2YMcPR1vw/pavp5ptvVlVVlePjxq258cYbtXXrVk2ZMsXRVl5e7tLj+Pr6tvrHee/evTp58qSWLFmiiIgISbrgufPWxrTb7S7Vgc6D/dT1/fTb5s+fr379+mndunUtHuett96SYRiOgPH+++8rKChIffr0cekxQkJCWv270J6fO38XLoxJt52Q1WrVnj179NlnnzkdBm4WFBSk2bNna9asWVqzZo0OHDigHTt26Nlnn9WaNWskSf3799dHH32kd955R//7v/+rRx99VB9++OHVfipKTEzU8OHDlZKSok2bNqmyslIffPCBHn74YUdweOCBB7R69Wq99NJL+t///V8tWLBAn3766WV5/B/84Afy9fXVs88+q3/961/629/+pscff/yS7hsZGamKigrt3LlTJ06cUH19/WWpCZ6B/bR9+2loaKgyMzP1zDPPOLXPmDFDX375pe677z7t3btXf/3rX7VgwQJlZmY6ndZqj/b83CMjI/Xuu+/q8OHDOnHixGWpx1MQWDqp4OBgBQcHX3D7448/rkcffVQ5OTm68cYbNXbsWP39739XVFSUJOk3v/mNUlNTlZ6erri4OJ08edLpfxNXi8Vi0YYNGzRy5EhlZGTohhtu0KRJk/TFF18oNDRUkpSenq5HH31Uc+fO1dChQ/XFF19o+vTpl+Xxe/TooZdffllvvvmmBg0apCVLlig3N/eS7nvXXXdp7NixGj16tHr06KG1a9delprgOdhP27efzp49W127dnVq6927tzZs2KBt27ZpyJAh+s///E/dc889euSRR9r1WN/Wnp/7Y489psrKSvXr189pHhAki2EYhruLAK62hQsXqqCgwPGRSwDmw36Kb+MICwAAMD0CCzq9rl27XvCrtLTU3eUBEPspOCUEaP/+/Rfc1rt3bwUEBFzFagC0hv0UBBYAAGB6nBICAACmR2ABAACmR2ABAACmR2ABAACmR2ABAACmR2ABAACmR2ABAACmR2ABAACm9/8AFudjh1j2PKwAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"kwrd_freq_df.boxplot(column=['Mean Freq_Part', 'Mean Freq_NonPart'])"
]
},
{
"cell_type": "markdown",
"id": "e36ce5ea-c0e8-4df4-9034-6d21a9642a5d",
"metadata": {},
"source": [
"On s'apperçoit que parmi la liste des mots-clés experts retournés, un grand nombre d'entre eux n'apparaissent pas dans les titres-mots clés concaténés. En dehors de ceux pour lesquels la fréquence d'apparition est positive, ils semblent donc peu discriminant pour les publications de ce champ. Ce résultat apparaît d'autant plus contre-intuitif que ce sont ces mêmes mots clefs qui ont été utilisés pour la réalisation de la requête.\n",
"\n",
"Il conviendrait ici d'extraire les mots clefs représentatifs de ces publications à partir d'un algorithme comme BM25. [à implémenter avec service alvis](https://text-mining-dev.migale.inrae.fr/demo/kes/)."
]
},
{
"cell_type": "markdown",
"id": "02d30200-ed8e-4a74-8c5c-ddb7b9ec3cb6",
"metadata": {},
"source": [
"On peut se demander si à l'inverse les mots-clés auteurs sont plus discriminants. On réitère pour ce faire l'opération précédente mais en utilisant les mots clés des auteurs."
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "4f83e559-db5a-4cf9-9eac-77195b6e0fbf",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"5919\n",
"4541\n",
"CPU times: user 2.64 s, sys: 4.88 ms, total: 2.64 s\n",
"Wall time: 2.64 s\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Author Keyword</th>\n",
" <th>Mean Freq_Part</th>\n",
" <th>Mean Freq_NonPart</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>672</th>\n",
" <td>citizen_science</td>\n",
" <td>0.024011</td>\n",
" <td>0.000222</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3047</th>\n",
" <td>participatory_research</td>\n",
" <td>0.016949</td>\n",
" <td>0.000222</td>\n",
" </tr>\n",
" <tr>\n",
" <th>126</th>\n",
" <td>agroecology</td>\n",
" <td>0.014124</td>\n",
" <td>0.004225</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3029</th>\n",
" <td>participatory_approach</td>\n",
" <td>0.012006</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4065</th>\n",
" <td>sustainability</td>\n",
" <td>0.009887</td>\n",
" <td>0.000667</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1737</th>\n",
" <td>gestational_diabetes</td>\n",
" <td>0.000000</td>\n",
" <td>0.000222</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1738</th>\n",
" <td>gestational_weight_gain</td>\n",
" <td>0.000000</td>\n",
" <td>0.000222</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1739</th>\n",
" <td>gh70_family</td>\n",
" <td>0.000000</td>\n",
" <td>0.000222</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1742</th>\n",
" <td>gibel_carp</td>\n",
" <td>0.000000</td>\n",
" <td>0.000222</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4540</th>\n",
" <td>zymoseptoria_tritici</td>\n",
" <td>0.000000</td>\n",
" <td>0.000222</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>4541 rows × 3 columns</p>\n",
"</div>"
],
"text/plain": [
" Author Keyword Mean Freq_Part Mean Freq_NonPart\n",
"672 citizen_science 0.024011 0.000222\n",
"3047 participatory_research 0.016949 0.000222\n",
"126 agroecology 0.014124 0.004225\n",
"3029 participatory_approach 0.012006 0.000000\n",
"4065 sustainability 0.009887 0.000667\n",