Skip to content
Snippets Groups Projects
Noteebook_Capitalisation_RAG_Platform_20250220.ipynb 303 KiB
Newer Older
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "cdd5bdb3-6199-4289-9d1a-cb3c3839bb5a",
   "metadata": {},
   "source": [
    "# Controversy RaG : classification automatique de publications scientifiques"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d9747cc5-0103-4245-9567-af7eb0224a83",
   "metadata": {},
   "source": [
    "Ce notebook reprend les enseignements des expérimentations menées dans le cadre d'un projet d'automatisation de l'identification de publications scientifiques appartenant au domaine des Sciences et Recherches Participatives. \n",
    "\n",
    "Il capitalise plusieurs mois d'expérimentations en matière d'apprentissage machine (few-shot learning) reposant sur l'utilisation des modèles de langues de dimensions variées."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6e862775-7017-4e9e-a865-020c8c048ccf",
   "metadata": {},
   "source": [
    "## Description du projet"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "78632b41-fae1-4998-89c2-11f284b54b1b",
   "metadata": {},
   "source": [
    "## Problématique\n",
    "\n",
    "Lorsque des experts doivent décider si un document appartient ou pas au domaine des Sciences et Recherches Participatives, ils se basent sur une série d'indices textuels qui malheureusement, en dehors de l'identification de termes clés, ne sont pas explicités. Cela s'explique en partie par le fait que les alignements cognitifs qui se font entre ce qu'ils lisent et percoivent d'un ensemble de résumés et de mots-clés auteurs et la représentation mentale qu'ils se font du champ à délinéer, sont largement inconscients.\n",
    "\n",
    "Cela signifie que lorsque l'on veut traduire ces mécanismes de catégorisation en algorithme d'apprentissage on ne dispose en réalité que de peu de matériaux. \n",
    "\n",
    "Dans notre cas, ces matériaux se résument à une série de mot-clés. Or, la présence ou l'absence de mots-clés ne suffisent pas à eux seuls à catégoriser l'appartenance d'un texte à un domaine. \n",
    "\n",
    "[donner exemple]\n",
    "\n",
    "L'objectif de ces expérimentations était de voir si en utilisant des modèles de langue, un ensemble minimal de données annotées, on est en mesure de recoder, plus ou moins parfaitement "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6fe8594e-8b93-4d80-af3c-fb8f5bdee515",
   "metadata": {},
   "source": [
    "## Code - Experimentations"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3730f089-7102-4783-968a-d2b4301d4fe6",
   "metadata": {},
   "source": [
    "### Installation des paramètres d'environnement"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "9d8cf842-3f72-4300-8988-3bac5e814fad",
   "metadata": {},
   "outputs": [],
   "source": [
    "### Chargement des librairies"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "9f63996b-32c3-498e-babb-9d7e7d97f8c4",
   "metadata": {},
   "outputs": [],
   "source": [
    "#### A. Librairies python pour la gestion de l'environnement de travail\n",
    "import os\n",
    "import time"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "2d8b00bb-0129-4c9f-bbea-be259942f6c7",
   "metadata": {},
   "outputs": [],
   "source": [
    "#### B. Librairies python pour la manipulation de string\n",
    "import ast\n",
    "import json\n",
    "import re"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "9d7c2d9b-e095-41cc-8910-d087a66ebb01",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "INFO: Pandarallel will run on 6 workers.\n",
      "INFO: Pandarallel will use Memory file system to transfer data between the main process and workers.\n"
     ]
    }
   ],
   "source": [
    "#### C. Librairies python pour la manipulation de dataframes\n",
    "import numpy as np\n",
    "from pandarallel import pandarallel\n",
    "pandarallel.initialize(nb_workers=6,progress_bar=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "59e02aee-d698-4748-b2ca-4655a2421705",
   "metadata": {},
   "outputs": [],
   "source": [
    "#### D. Librairies python pour la production de datavisualisation et \n",
    "#### la manipulation de données vectorielles\n",
    "import matplotlib.pyplot as plt\n",
    "from sklearn.preprocessing import MinMaxScaler\n",
    "from sklearn.cluster import KMeans\n",
    "from sklearn.metrics import silhouette_score\n",
    "from sklearn.metrics.pairwise import cosine_distances\n",
    "from sklearn.neighbors import NearestNeighbors\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "ab0479ab-3e8e-4c5e-bb46-c5f062112a39",
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib inline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "1e85a083-b5e8-4e15-a422-d934bc06c2d8",
   "metadata": {},
   "outputs": [],
   "source": [
    "#### E. Librairies python dédiées au NLP\n",
    "import rank_bm25\n",
    "from rank_bm25 import BM25Okapi\n",
    "from sklearn.feature_extraction.text import TfidfVectorizer\n",
    "from sentence_transformers import SentenceTransformer\n",
    "from transformers import BertTokenizer,BertTokenizerFast, BertModel"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "6570ccbf-1822-4c95-ba42-c22d0d4287b2",
   "metadata": {},
   "outputs": [],
   "source": [
    "#### F. Librairies python pour la manipulation de modèles de langue \n",
    "#### et la création de pipelines de traitements\n",
    "from langchain_experimental.text_splitter import SemanticChunker\n",
    "from langchain_huggingface import HuggingFaceEmbeddings\n",
    "from langchain.retrievers import BM25Retriever, EnsembleRetriever\n",
    "from langchain_core.documents import Document\n",
    "from langchain_chroma import Chroma\n",
    "from langchain_huggingface import HuggingFaceEmbeddings\n",
    "from chromadb.utils import embedding_functions\n",
    "import torch"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "ea3ccc29-df60-4a1d-8796-a8dc0a894fcc",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "cuda:0\n"
     ]
    }
   ],
   "source": [
    "### On vérifie que l'on travaille bien avec le gpu\n",
    "device = \"cuda:0\" if torch.cuda.is_available() else \"cpu\"\n",
    "print(device)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3a65f885-b6c8-4083-a05b-a1ac81fa4b78",
   "metadata": {},
   "outputs": [],
   "source": [
    "#### G. Modules maison\n",
    "##### tok_func est un module (script python ici) qui rassemble dans un même fichier\n",
    "##### l'ensembles des fonctions de pre-processing des données textuelles (nettoyage, \n",
    "##### standardisation, tokenization, lemmatisation, ...)\n",
    "from tok_func import *\n"
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "f435e71e-3211-4be0-a67b-08d841282f40",
   "metadata": {},
   "outputs": [],
   "source": [
    "#### Pré-chargment de modèles (ne pas toucher)\n",
    "##### Pour éviter certains warnings dû à l'utilisation d'opérations\n",
    "##### d'encodage de données textuelles se faisant dans des fonctions\n",
    "##### on précharge avant l'utilisation de ces fonctions (dans le script tok_func)\n",
    "##### les modèles de langue à utiliser.\n",
    "##### Attention le modèle Qwen Instruct est très lourd. Sur votre machine vous devrez \n",
    "##### sûrement le modifier pour un modèle plus léger.\n",
    "###https://huggingface.co/sentence-transformers/allenai-specter\n",
    "docmodel= None\n",
    "kwrdmdl = None\n",
    "spectermodel = SentenceTransformer(\n",
    "   \"sentence-transformers/allenai-specter\", trust_remote_code=True\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7d76c76c-282a-431a-8f61-4c5eb1f74074",
   "metadata": {},
   "source": [
    "### Fonctions utilisées "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "00ac6224-198f-478e-816d-4cb54d941d99",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_sbert_embedding(document, model_name='all-MiniLM-L6-v2'):\n",
    "    '''Function takes as input raw text and return its bert embeddings.\n",
    "    It uses sentence Bert as we focus at the text level and not the token level'''\n",
    "    global docmodel\n",
    "    # Load the SBERT model only if it hasn't been loaded yet\n",
    "    if docmodel is None:\n",
    "        docmodel = SentenceTransformer(model_name)\n",
    "\n",
    "    # Get the embedding\n",
    "    embedding = docmodel.encode(document, convert_to_numpy=True)\n",
    "    \n",
    "    return embedding"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "b18eb638-7ef6-4618-bb86-1da8e0c14ffb",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "INFO: Pandarallel will run on 30 workers.\n",
      "INFO: Pandarallel will use Memory file system to transfer data between the main process and workers.\n"
     ]
    }
   ],
   "source": [
    "from pandarallel import pandarallel\n",
    "pandarallel.initialize(nb_workers=30,progress_bar=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6feede94-3789-4875-bfed-3b6eb9fc3b60",
   "metadata": {},
   "source": [
    "### Import et PreProcessing des données"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "c2cec83e-3a54-4303-ac83-d77738da57d0",
   "metadata": {},
   "outputs": [],
   "source": [
    "#### le dataframe keywords_df contient la liste des mots-clefs repérés par les experts \n",
    "#### pour la construction de la requête d'interrogation des platformes bibliographiques\n",
    "#### ainsi que des mots-clefs supplémentaires repérés au cours de leur examen des ensembles\n",
    "#### titres+résumés\n",
    "\n",
    "keywords_df = pd.read_csv(\"/home/trix/Dev/classification/Data/corpuskeywordsV2.csv\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "b3b369fa-c42d-4918-9d57-ee3445a71544",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1156\n",
      "1156\n"
     ]
    }
   ],
   "source": [
    "#### le dataframe expert_df constitue le corpus d'apprentissage et d'entraînement à partir\n",
    "#### duquel les expérimentations de few-shot learning seront menées.\n",
    "#### Ce dataset a été annoté par des experts, et augmentés de données afin d'accroître le\n",
    "#### nombre de publications hors-champ.\n",
    "\n",
    "expert_df = pd.read_excel(\"/home/trix/Dev/classification/Data/Annotated_Complemented_ExpertDataset_20241106.xlsx\")\n",
    "print(len(expert_df))\n",
    "\n",
    "#### vérifions qu'il n'y ait pas de publications en double dans ce dataset \n",
    "expert_df.drop_duplicates(subset='cle_UT')\n",
    "print(len(expert_df))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "b9314924-9b61-4193-85a8-4e05565c0a87",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Composition du dataset pour l'entraînement et les tests des expérimentations de classification:\n",
      "\n",
      "\tNombre de publications du dataset:\n",
      "\t1156\n",
      "\n",
      "\tNombre de publications dans le champ:\n",
      "\t242\n",
      "\n",
      "\tNombre de publications hors-champ:\n",
      "\t883\n",
      "\n",
      "\tNombre de publications ambigües:\n",
      "\t30\n"
     ]
    }
   ],
   "source": [
    "print(\"Composition du dataset pour l'entraînement et les tests des expérimentations de classification:\")\n",
    "print(f\"\\n\\tNombre de publications du dataset:\\n\\t{len(expert_df)}\")\n",
    "print(f\"\\n\\tNombre de publications dans le champ:\\n\\t{len(expert_df[expert_df.label == 'yes'])}\")\n",
    "print(f\"\\n\\tNombre de publications hors-champ:\\n\\t{len(expert_df[expert_df.label == 'no'])}\")\n",
    "print(f\"\\n\\tNombre de publications ambigües:\\n\\t{len(expert_df[expert_df.label == 'ambiguous'])}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "fb0ab3a4-4702-4fde-84d0-fd01df5ce3e4",
   "metadata": {},
   "outputs": [],
   "source": [
    "#### Dans notre cas il existe en réalité une troisime catégorie identifiée \n",
    "#### par les experts: ambiguës. Cetta catégorie est toutefois trop peu importante\n",
    "#### pour que l'on puisse s'en servir (résultat de précédentes expérimentations).\n",
    "#### On considère donc qu'elles sont hors-champ. Pour ne pas perdre leur trace\n",
    "#### on effectue une copie du dataframe original.\n",
    "\n",
    "expert_copy = expert_df.copy()\n",
    "expert_copy['label'] = expert_copy.label.apply(lambda x: 'participative science' if x == 'yes' else x)\n",
    "expert_copy['label'] = expert_copy.label.apply(lambda x: 'non-participative science' if x == 'no' else x)\n",
    "expert_copy['label'] = expert_copy.label.apply(lambda x: 'non-participative science' if x == 'ambiguous' else x)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "092d0945-e874-41b3-8397-71d015ecff1b",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Composition du dataset pour l'entraînement et le test du classificateur:\n",
      "\n",
      "\tNombre de publications du dataset:\n",
      "\t1156\n",
      "\n",
      "\tNombre de publications dans le champ:\n",
      "\t242\n",
      "\n",
      "\tNombre de publications hors-champ:\n",
      "\t913\n",
      "\n",
      "\tNombre de publications ambigües:\n",
      "\t0\n"
     ]
    }
   ],
   "source": [
    "print(\"Composition du dataset pour l'entraînement et le test du classificateur:\")\n",
    "print(f\"\\n\\tNombre de publications du dataset:\\n\\t{len(expert_copy)}\")\n",
    "print(f\"\\n\\tNombre de publications dans le champ:\\n\\t{len(expert_copy[expert_copy.label == 'participative science'])}\")\n",
    "print(f\"\\n\\tNombre de publications hors-champ:\\n\\t{len(expert_copy[expert_copy.label == 'non-participative science'])}\")\n",
    "print(f\"\\n\\tNombre de publications ambigües:\\n\\t{len(expert_copy[expert_copy.label == 'ambiguous'])}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9aab6dfa-e7ee-4df9-8566-bb51fddc1381",
   "metadata": {},
   "source": [
    "Comme on peut le voir, dans le corpus qui va nous servir de dataset d'entraînement et de test, 79% des publications annotées sont hors-champ; 21% dans le champ."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "a7fcc0cc-708c-4973-941c-87010bff5395",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "9ee82e88c58540a281549d038a23cbf2",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "VBox(children=(HBox(children=(IntProgress(value=0, description='0.00%', max=39), Label(value='0 / 39'))), HBox…"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "e6b92ba89fb84a31a58fb17fdb36ac3e",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "VBox(children=(HBox(children=(IntProgress(value=0, description='0.00%', max=39), Label(value='0 / 39'))), HBox…"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "75138e95632a4c6db780357d72fcf0cd",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "VBox(children=(HBox(children=(IntProgress(value=0, description='0.00%', max=39), Label(value='0 / 39'))), HBox…"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "ename": "KeyError",
     "evalue": "\"['Unnamed: 0'] not found in axis\"",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mKeyError\u001b[0m                                  Traceback (most recent call last)",
      "File \u001b[0;32m<timed exec>:12\u001b[0m\n",
      "File \u001b[0;32m~/pythonenvs/envs/llm_rag/lib/python3.11/site-packages/pandas/core/frame.py:5581\u001b[0m, in \u001b[0;36mDataFrame.drop\u001b[0;34m(self, labels, axis, index, columns, level, inplace, errors)\u001b[0m\n\u001b[1;32m   5433\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21mdrop\u001b[39m(\n\u001b[1;32m   5434\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m   5435\u001b[0m     labels: IndexLabel \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m   5442\u001b[0m     errors: IgnoreRaise \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mraise\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m   5443\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m DataFrame \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m   5444\u001b[0m \u001b[38;5;250m    \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m   5445\u001b[0m \u001b[38;5;124;03m    Drop specified labels from rows or columns.\u001b[39;00m\n\u001b[1;32m   5446\u001b[0m \n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m   5579\u001b[0m \u001b[38;5;124;03m            weight  1.0     0.8\u001b[39;00m\n\u001b[1;32m   5580\u001b[0m \u001b[38;5;124;03m    \"\"\"\u001b[39;00m\n\u001b[0;32m-> 5581\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdrop\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   5582\u001b[0m \u001b[43m        \u001b[49m\u001b[43mlabels\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlabels\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   5583\u001b[0m \u001b[43m        \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   5584\u001b[0m \u001b[43m        \u001b[49m\u001b[43mindex\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mindex\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   5585\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcolumns\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcolumns\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   5586\u001b[0m \u001b[43m        \u001b[49m\u001b[43mlevel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlevel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   5587\u001b[0m \u001b[43m        \u001b[49m\u001b[43minplace\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minplace\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   5588\u001b[0m \u001b[43m        \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43merrors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   5589\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/pythonenvs/envs/llm_rag/lib/python3.11/site-packages/pandas/core/generic.py:4788\u001b[0m, in \u001b[0;36mNDFrame.drop\u001b[0;34m(self, labels, axis, index, columns, level, inplace, errors)\u001b[0m\n\u001b[1;32m   4786\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m axis, labels \u001b[38;5;129;01min\u001b[39;00m axes\u001b[38;5;241m.\u001b[39mitems():\n\u001b[1;32m   4787\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m labels \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m-> 4788\u001b[0m         obj \u001b[38;5;241m=\u001b[39m \u001b[43mobj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_drop_axis\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlabels\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlevel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlevel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43merrors\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   4790\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m inplace:\n\u001b[1;32m   4791\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_update_inplace(obj)\n",
      "File \u001b[0;32m~/pythonenvs/envs/llm_rag/lib/python3.11/site-packages/pandas/core/generic.py:4830\u001b[0m, in \u001b[0;36mNDFrame._drop_axis\u001b[0;34m(self, labels, axis, level, errors, only_slice)\u001b[0m\n\u001b[1;32m   4828\u001b[0m         new_axis \u001b[38;5;241m=\u001b[39m axis\u001b[38;5;241m.\u001b[39mdrop(labels, level\u001b[38;5;241m=\u001b[39mlevel, errors\u001b[38;5;241m=\u001b[39merrors)\n\u001b[1;32m   4829\u001b[0m     \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 4830\u001b[0m         new_axis \u001b[38;5;241m=\u001b[39m \u001b[43maxis\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdrop\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlabels\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43merrors\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   4831\u001b[0m     indexer \u001b[38;5;241m=\u001b[39m axis\u001b[38;5;241m.\u001b[39mget_indexer(new_axis)\n\u001b[1;32m   4833\u001b[0m \u001b[38;5;66;03m# Case for non-unique axis\u001b[39;00m\n\u001b[1;32m   4834\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n",
      "File \u001b[0;32m~/pythonenvs/envs/llm_rag/lib/python3.11/site-packages/pandas/core/indexes/base.py:7070\u001b[0m, in \u001b[0;36mIndex.drop\u001b[0;34m(self, labels, errors)\u001b[0m\n\u001b[1;32m   7068\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m mask\u001b[38;5;241m.\u001b[39many():\n\u001b[1;32m   7069\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m errors \u001b[38;5;241m!=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mignore\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m-> 7070\u001b[0m         \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mlabels[mask]\u001b[38;5;241m.\u001b[39mtolist()\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m not found in axis\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m   7071\u001b[0m     indexer \u001b[38;5;241m=\u001b[39m indexer[\u001b[38;5;241m~\u001b[39mmask]\n\u001b[1;32m   7072\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdelete(indexer)\n",
      "\u001b[0;31mKeyError\u001b[0m: \"['Unnamed: 0'] not found in axis\""
     ]
    }
   ],
   "source": [
    "%%time\n",
    "#### Plusieurs opérations sont réalisées ici:\n",
    "#### - découpage des données textuelles (tritres+abstracts) en phrases (raw sentences),\n",
    "#### - nettoyage de ces phrases (cleaned_sentences),\n",
    "#### - transformation des keywords auteur en liste de mots-clés (changement de type de données),\n",
    "\n",
    "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"True\"\n",
    "expert_copy['raw_sentences'] = expert_copy.tires.apply(lambda x: get_sentences(x,tokenized=False,rawsent = True))\n",
    "expert_copy['cleaned_sentences'] = expert_copy.tires.parallel_apply(lambda x: get_sentences(x,tokenized=False, rawsent = False))\n",
    "expert_copy['tokenized_doc'] = expert_copy.tires.parallel_apply(lambda x: get_sentences(x, tokenized=True))\n",
    "expert_copy['keywords'] = expert_copy.keywords.apply(lambda x: ast.literal_eval(x) if x!= \"Null\" else [\"Null\"])\n",
    "expert_copy['participatory_keywords'] = expert_copy.cleaned_sentences.parallel_apply(lambda x: extract_targets(x))\n",
    "expert_copy = expert_copy.drop(columns=['Unnamed: 0'],axis=1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "d290775f-760a-4b32-b96d-fdfe9d982dd3",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Index</th>\n",
       "      <th>cle_UT</th>\n",
       "      <th>doi</th>\n",
       "      <th>tires</th>\n",
       "      <th>keywords</th>\n",
       "      <th>year</th>\n",
       "      <th>label</th>\n",
       "      <th>references</th>\n",
       "      <th>raw_sentences</th>\n",
       "      <th>cleaned_sentences</th>\n",
       "      <th>tokenized_doc</th>\n",
       "      <th>participatory_keywords</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>11</td>\n",
       "      <td>WOS:000928116000001</td>\n",
       "      <td>10.1177/16094069221137492</td>\n",
       "      <td>Tailoring Cognitive Mapping Analysis Methods t...</td>\n",
       "      <td>[participatory_research, social_learning, coll...</td>\n",
       "      <td>2022</td>\n",
       "      <td>participative science</td>\n",
       "      <td>001-076-538-431-45X,001-162-706-708-552,004-42...</td>\n",
       "      <td>tailor cognitive mapping analysis methods diff...</td>\n",
       "      <td>tailor cognitive mapping analysis methods diff...</td>\n",
       "      <td>[tailor, cognitive, mapping, analysis, methods...</td>\n",
       "      <td>participatory_process</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>12</td>\n",
       "      <td>WOS:000895513400001</td>\n",
       "      <td>10.3390/land11112095</td>\n",
       "      <td>Who and Where Are the Observers behind Biodive...</td>\n",
       "      <td>[citizen_science, spatial_bias, observer_profi...</td>\n",
       "      <td>2022</td>\n",
       "      <td>participative science</td>\n",
       "      <td>000-826-091-294-906,002-078-837-621-902,003-66...</td>\n",
       "      <td>observer biodiversity citizen_science data. ef...</td>\n",
       "      <td>observer biodiversity citizen_science data. ef...</td>\n",
       "      <td>[observer, biodiversity, citizen_science, data...</td>\n",
       "      <td>behavior_volunteer_engagement;citizen_science;...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>14</td>\n",
       "      <td>WOS:000880001000004</td>\n",
       "      <td>10.1016/j.ejsobi.2022.103449</td>\n",
       "      <td>Gut content metabarcoding and citizen science ...</td>\n",
       "      <td>[citizen_science, earthworms, flatworms, gut_c...</td>\n",
       "      <td>2022</td>\n",
       "      <td>participative science</td>\n",
       "      <td>000-069-184-790-014,001-257-411-314-46X,003-53...</td>\n",
       "      <td>gut content metabarcoding citizen_science reve...</td>\n",
       "      <td>gut content metabarcoding citizen_science reve...</td>\n",
       "      <td>[gut, content, metabarcoding, citizen_science,...</td>\n",
       "      <td>citizen_science;volunteer_reporting</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "  Index               cle_UT                           doi  \\\n",
       "0    11  WOS:000928116000001     10.1177/16094069221137492   \n",
       "1    12  WOS:000895513400001          10.3390/land11112095   \n",
       "2    14  WOS:000880001000004  10.1016/j.ejsobi.2022.103449   \n",
       "\n",
       "                                               tires  \\\n",
       "0  Tailoring Cognitive Mapping Analysis Methods t...   \n",
       "1  Who and Where Are the Observers behind Biodive...   \n",
       "2  Gut content metabarcoding and citizen science ...   \n",
       "\n",
       "                                            keywords  year  \\\n",
       "0  [participatory_research, social_learning, coll...  2022   \n",
       "1  [citizen_science, spatial_bias, observer_profi...  2022   \n",
       "2  [citizen_science, earthworms, flatworms, gut_c...  2022   \n",
       "\n",
       "                   label                                         references  \\\n",
       "0  participative science  001-076-538-431-45X,001-162-706-708-552,004-42...   \n",
       "1  participative science  000-826-091-294-906,002-078-837-621-902,003-66...   \n",
       "2  participative science  000-069-184-790-014,001-257-411-314-46X,003-53...   \n",
       "\n",
       "                                       raw_sentences  \\\n",
       "0  tailor cognitive mapping analysis methods diff...   \n",
       "1  observer biodiversity citizen_science data. ef...   \n",
       "2  gut content metabarcoding citizen_science reve...   \n",
       "\n",
       "                                   cleaned_sentences  \\\n",
       "0  tailor cognitive mapping analysis methods diff...   \n",
       "1  observer biodiversity citizen_science data. ef...   \n",
       "2  gut content metabarcoding citizen_science reve...   \n",
       "\n",
       "                                       tokenized_doc  \\\n",
       "0  [tailor, cognitive, mapping, analysis, methods...   \n",
       "1  [observer, biodiversity, citizen_science, data...   \n",
       "2  [gut, content, metabarcoding, citizen_science,...   \n",
       "\n",
       "                              participatory_keywords  \n",
       "0                              participatory_process  \n",
       "1  behavior_volunteer_engagement;citizen_science;...  \n",
       "2                citizen_science;volunteer_reporting  "
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "expert_copy.head(3)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b9e1da04-1534-4050-890b-b192437bf2ff",
   "metadata": {},
   "source": [
    "### Premiers éléments d'analyses"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ff9762f9-924e-4e17-ae4e-fcc8ae51b4f9",
   "metadata": {},
   "source": [
    "Dans un premier temps, on souhaite regarder si parmi la liste des mots-clés des experts certains sont plus représentatifs des publications appartenant au champ et si d'autres, au contraire sont plutôt ambiguës. \n",
    "\n",
    "Pour cela on va regarder la fréquence de distribution de chacun des mots-clés expert au sein des titres+abstracts et regarder comment les résultats obtenus permettent ou pas de discriminer les publications dans ou hors-champ. Si nous ne ferons pas un usage immédiat de ces résultats cela nous donne cependant un indice de saillance de ces mots-clés, et nous permettra plus tard de réduire le bruit qui met en défaut les modèles de langues au moment de la classification."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "cf6eb010-959c-4971-9e95-a1d7109e4fa2",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "CPU times: user 6.24 s, sys: 4.81 ms, total: 6.25 s\n",
      "Wall time: 6.24 s\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Expert Keyword</th>\n",
       "      <th>Mean Freq_Part</th>\n",
       "      <th>Mean Freq_NonPart</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>18</th>\n",
       "      <td>citizen_science</td>\n",
       "      <td>0.342975</td>\n",
       "      <td>0.002191</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>89</th>\n",
       "      <td>participatory_approach</td>\n",
       "      <td>0.276860</td>\n",
       "      <td>0.013143</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>98</th>\n",
       "      <td>participatory_process</td>\n",
       "      <td>0.119835</td>\n",
       "      <td>0.007667</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>101</th>\n",
       "      <td>participatory_research</td>\n",
       "      <td>0.115702</td>\n",
       "      <td>0.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>44</th>\n",
       "      <td>codesign_process</td>\n",
       "      <td>0.103306</td>\n",
       "      <td>0.058050</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>28</th>\n",
       "      <td>co_design_process</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>79</th>\n",
       "      <td>onfarm_participatory</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>77</th>\n",
       "      <td>multiactor_coinnovation_workshop</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>76</th>\n",
       "      <td>multiactor_co-innovation_workshop</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>68</th>\n",
       "      <td>innovation_codesigne</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>136 rows × 3 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "                        Expert Keyword  Mean Freq_Part  Mean Freq_NonPart\n",
       "18                     citizen_science        0.342975           0.002191\n",
       "89              participatory_approach        0.276860           0.013143\n",
       "98               participatory_process        0.119835           0.007667\n",
       "101             participatory_research        0.115702           0.000000\n",
       "44                    codesign_process        0.103306           0.058050\n",
       "..                                 ...             ...                ...\n",
       "28                   co_design_process        0.000000           0.000000\n",
       "79                onfarm_participatory        0.000000           0.000000\n",
       "77    multiactor_coinnovation_workshop        0.000000           0.000000\n",
       "76   multiactor_co-innovation_workshop        0.000000           0.000000\n",
       "68                innovation_codesigne        0.000000           0.000000\n",
       "\n",
       "[136 rows x 3 columns]"
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "%%time\n",
    "kscores=[]\n",
    "for k in keywords_df.Keywords.to_list():\n",
    "    partokenlist = expert_copy['tokenized_doc'][expert_copy.label == 'participative science'].to_list()\n",
    "    partbm25 = BM25Okapi(partokenlist)\n",
    "    nonpartokenlist = expert_copy['tokenized_doc'][expert_copy.label == 'non-participative science'].to_list()\n",
    "    nonpartbm25 = BM25Okapi(nonpartokenlist)\n",
    "    \n",
    "    kpartcount = [tklist.count(k) for tklist in partokenlist]\n",
    "    partbm25_scores = partbm25.get_scores(k)\n",
    "    kpartmean = sum(kpartcount)/len(partokenlist)\n",
    "    partbm25mean = sum(partbm25_scores)/len(partbm25_scores)\n",
    "    \n",
    "    knonpartcount = [tklist.count(k) for tklist in nonpartokenlist]\n",
    "    nonpartbm25_scores = nonpartbm25.get_scores(k)\n",
    "    knonpartmean = sum(knonpartcount)/len(nonpartokenlist)\n",
    "    nonpartbm25mean = sum(nonpartbm25_scores)/len(nonpartbm25_scores)\n",
    "    kscores.append([k,kpartmean,knonpartmean])\n",
    "\n",
    "kwrd_freq_df = pd.DataFrame(data=kscores,columns=['Expert Keyword','Mean Freq_Part','Mean Freq_NonPart'])\n",
    "kwrd_freq_df.sort_values(by='Mean Freq_Part',ascending = False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "080de2e0-7db5-4a1e-bad6-9d8767f82ff1",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<Axes: >"
      ]
     },
     "execution_count": 22,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQPBJREFUeJzt3X1clHW+//H3MNwrWIkCKhsoprmhbFqsbogWiJrnyBL7QPdG47S2R9duBHXDyptqxQzNU2ux5VpWm7YZD3YPaybLilGBlh5LSzvqQuYNeNNRFAyG4fr94Y+pCTQH1LkYXs/Hg4fM9/rOdz7DcDFvr+s719diGIYhAAAAE/NydwEAAADfh8ACAABMj8ACAABMj8ACAABMj8ACAABMj8ACAABMj8ACAABMj8ACAABMz9vdBVwOTU1NOnLkiIKCgmSxWNxdDgAAuASGYejMmTPq1auXvLwufgzFIwLLkSNHFBER4e4yAABAG3z55Zfq06fPRft4RGAJCgqSdP4JBwcHu7kaXGk2m02bNm3SmDFj5OPj4+5yAFxG7N+dS01NjSIiIhzv4xfjEYGl+TRQcHAwgaUTsNlsCgwMVHBwMH/QAA/D/t05Xcp0DibdAgAA0yOwAAAA02tTYFm5cqUiIyPl7++vuLg4bdu27YJ98/PzNWzYMF1zzTXq0qWLYmNj9eqrrzr1ufvuu2WxWJy+xo4d25bSAACAB3J5Dssbb7yhzMxM5eXlKS4uTitWrFBycrI+//xz9ezZs0X/6667Tg8//LAGDhwoX19fFRYWKiMjQz179lRycrKj39ixY/XSSy85bvv5+bXxKQEAAE/j8hGW5cuXa9q0acrIyNCgQYOUl5enwMBArV69utX+o0aN0k9/+lPdeOON6tevnx544AENHjxY7733nlM/Pz8/hYWFOb6uvfbatj0jAADgcVwKLA0NDdq+fbsSExO/GcDLS4mJiSorK/ve+xuGoeLiYn3++ecaOXKk07aSkhL17NlTAwYM0PTp03Xy5ElXSgMAAB7MpVNCJ06ckN1uV2hoqFN7aGio9u7de8H7nT59Wr1791Z9fb2sVquee+45JSUlObaPHTtWqampioqK0oEDBzRv3jyNGzdOZWVlslqtLcarr69XfX2943ZNTY2k8x+Hs9lsrjwldEDNrzGvNeB52L87F1de56tyHZagoCDt3LlTZ8+eVXFxsTIzM9W3b1+NGjVKkjRp0iRH35iYGA0ePFj9+vVTSUmJ7rjjjhbj5eTkaNGiRS3aN23apMDAwCv2PGAuRUVF7i4BwBXC/t051NXVXXJflwJLSEiIrFarqqurndqrq6sVFhZ2wft5eXkpOjpakhQbG6s9e/YoJyfHEVi+q2/fvgoJCdH+/ftbDSzZ2dnKzMx03G6+Ut6YMWO4cJyHs9vtKikpUVFRkZKSkjRq1KhWj8IB6JhsNptj/+bCcZ6v+QzJpXApsPj6+mro0KEqLi5WSkqKpPMLDxYXF2vmzJmXPE5TU5PTKZ3vOnTokE6ePKnw8PBWt/v5+bX6KSIfHx9+wT1Yfn6+srKyVFlZKen8BPDIyEgtW7ZMqamp7i0OwGXF3/POwZXX2OVPCWVmZurFF1/UmjVrtGfPHk2fPl21tbXKyMiQJE2ZMkXZ2dmO/jk5OSoqKtK//vUv7dmzR8uWLdOrr76qX/7yl5Kks2fPas6cOSovL1dlZaWKi4s1ceJERUdHO33sGZ1bfn6+0tLSFBMTo9LSUq1du1alpaWKiYlRWlqa8vPz3V0iAOAKcnkOS3p6uo4fP6758+erqqpKsbGx2rhxo2Mi7sGDB52WiK6trdWMGTN06NAhBQQEaODAgXrttdeUnp4uSbJarfrkk0+0Zs0anTp1Sr169dKYMWP0+OOPcy0WSDp/GigrK0sTJkxQQUGB7Ha7Tp48qbi4OBUUFCglJUWzZ8/WxIkTOT0EAB7KYhiG4e4i2qumpkbdunXT6dOnmcPigUpKSjR69GiVlZXpxz/+sWw2mzZs2KDx48fLx8dHZWVlGjFihDZv3nzBeVEAOobv7t/wbK68f7OWEEzv6NGjkqSbbrqp1e3N7c39AACeh8AC02uefL179+5Wtze3X2iSNgCg4yOwwPTi4+MVGRmpxYsXq6mpyWlbU1OTcnJyFBUVpfj4eDdVCAC40ggsMD2r1aply5apsLBQKSkpKi8v17lz51ReXq6UlBQVFhYqNzeXCbcA4MGuypVugfZKTU3V+vXrlZWV5bQOVVRUlNavX891WADAwxFY0GGkpqZq4sSJ2rx5s95++22NGzdOo0eP5sgKAHQCBBZ0KFarVQkJCaqtrVVCQgJhBQA6CeawAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA02tTYFm5cqUiIyPl7++vuLg4bdu27YJ98/PzNWzYMF1zzTXq0qWLYmNj9eqrrzr1MQxD8+fPV3h4uAICApSYmKh9+/a1pTQAAOCBXA4sb7zxhjIzM7VgwQLt2LFDQ4YMUXJyso4dO9Zq/+uuu04PP/ywysrK9MknnygjI0MZGRl65513HH2WLl2qZ555Rnl5edq6dau6dOmi5ORkff31121/ZgAAwGO4HFiWL1+uadOmKSMjQ4MGDVJeXp4CAwO1evXqVvuPGjVKP/3pT3XjjTeqX79+euCBBzR48GC99957ks4fXVmxYoUeeeQRTZw4UYMHD9Yrr7yiI0eOqKCgoF1PDgAAeAaXAktDQ4O2b9+uxMTEbwbw8lJiYqLKysq+9/6GYai4uFiff/65Ro4cKUmqqKhQVVWV05jdunVTXFzcJY0JAAA8n7crnU+cOCG73a7Q0FCn9tDQUO3du/eC9zt9+rR69+6t+vp6Wa1WPffcc0pKSpIkVVVVOcb47pjN276rvr5e9fX1jts1NTWSJJvNJpvN5spTQgfU/BrzWgOeh/27c3HldXYpsLRVUFCQdu7cqbNnz6q4uFiZmZnq27evRo0a1abxcnJytGjRohbtmzZtUmBgYDurRUdRVFTk7hIAXCHs351DXV3dJfd1KbCEhITIarWqurraqb26ulphYWEXvJ+Xl5eio6MlSbGxsdqzZ49ycnI0atQox/2qq6sVHh7uNGZsbGyr42VnZyszM9Nxu6amRhERERozZoyCg4NdeUrogGw2m4qKipSUlCQfHx93lwPgMmL/7lyaz5BcCpcCi6+vr4YOHari4mKlpKRIkpqamlRcXKyZM2de8jhNTU2OUzpRUVEKCwtTcXGxI6DU1NRo69atmj59eqv39/Pzk5+fX4t2Hx8ffsE7EV5vwHOxf3cOrrzGLp8SyszM1NSpUzVs2DDdeuutWrFihWpra5WRkSFJmjJlinr37q2cnBxJ50/fDBs2TP369VN9fb02bNigV199Vc8//7wkyWKx6MEHH9QTTzyh/v37KyoqSo8++qh69erlCEUAAKBzczmwpKen6/jx45o/f76qqqoUGxurjRs3OibNHjx4UF5e33z4qLa2VjNmzNChQ4cUEBCggQMH6rXXXlN6erqjz9y5c1VbW6t7771Xp06d0m233aaNGzfK39//MjxFAADQ0VkMwzDcXUR71dTUqFu3bjp9+jRzWDoBm82mDRs2aPz48RwyBjwM+3fn4sr7N2sJAQAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwoEOx2+3asmWL3n33XW3ZskV2u93dJQEArgICCzqM/Px8RUdHKykpScuXL1dSUpKio6OVn5/v7tIAAFcYgQUdQn5+vtLS0hQTE6PS0lKtXbtWpaWliomJUVpaGqEFADwcgQWmZ7fblZWVpQkTJqigoEBxcXEKCAhQXFycCgoKNGHCBM2ePZvTQwDgwQgsML3S0lJVVlZq3rx58vJy/pX18vJSdna2KioqVFpa6qYKAQBXGoEFpnf06FFJ0k033dTq9ub25n4AAM9DYIHphYeHS5J2797d6vbm9uZ+AADPQ2CB6cXHxysyMlKLFy9WU1OT07ampibl5OQoKipK8fHxbqoQAHClEVhgelarVcuWLVNhYaFSUlJUXl6uc+fOqby8XCkpKSosLFRubq6sVqu7SwUAXCHe7i4AuBSpqalav369srKyNHLkSEd7VFSU1q9fr9TUVDdWBwC40ggs6DBSU1M1ceJEbd68WW+//bbGjRun0aNHc2QFADoBAgs6FKvVqoSEBNXW1iohIYGwAgCdBHNYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6bUpsKxcuVKRkZHy9/dXXFyctm3bdsG+L774ouLj43Xttdfq2muvVWJiYov+d999tywWi9PX2LFj21IaAADwQC4HljfeeEOZmZlasGCBduzYoSFDhig5OVnHjh1rtX9JSYkmT56szZs3q6ysTBERERozZowOHz7s1G/s2LE6evSo42vt2rVte0YAAMDjuBxYli9frmnTpikjI0ODBg1SXl6eAgMDtXr16lb7//nPf9aMGTMUGxurgQMHatWqVWpqalJxcbFTPz8/P4WFhTm+rr322rY9IwAA4HFcCiwNDQ3avn27EhMTvxnAy0uJiYkqKyu7pDHq6upks9l03XXXObWXlJSoZ8+eGjBggKZPn66TJ0+6UhoAAPBg3q50PnHihOx2u0JDQ53aQ0NDtXfv3ksa43e/+5169erlFHrGjh2r1NRURUVF6cCBA5o3b57GjRunsrIyWa3WFmPU19ervr7ecbumpkaSZLPZZLPZXHlK6ICaX2Nea8DzsH93Lq68zi4FlvZasmSJ1q1bp5KSEvn7+zvaJ02a5Pg+JiZGgwcPVr9+/VRSUqI77rijxTg5OTlatGhRi/ZNmzYpMDDwyhQP0ykqKnJ3CQCuEPbvzqGuru6S+7oUWEJCQmS1WlVdXe3UXl1drbCwsIveNzc3V0uWLNE//vEPDR48+KJ9+/btq5CQEO3fv7/VwJKdna3MzEzH7ZqaGsdk3uDgYBeeEToim82moqIiJSUlycfHx93lALiM2L87l+YzJJfCpcDi6+uroUOHqri4WCkpKZLkmEA7c+bMC95v6dKl+v3vf6933nlHw4YN+97HOXTokE6ePKnw8PBWt/v5+cnPz69Fu4+PD7/gnQivN+C52L87B1deY5c/JZSZmakXX3xRa9as0Z49ezR9+nTV1tYqIyNDkjRlyhRlZ2c7+j/55JN69NFHtXr1akVGRqqqqkpVVVU6e/asJOns2bOaM2eOysvLVVlZqeLiYk2cOFHR0dFKTk52tTwAAOCBXJ7Dkp6eruPHj2v+/PmqqqpSbGysNm7c6JiIe/DgQXl5fZODnn/+eTU0NCgtLc1pnAULFmjhwoWyWq365JNPtGbNGp06dUq9evXSmDFj9Pjjj7d6FAUAAHQ+bZp0O3PmzAueAiopKXG6XVlZedGxAgIC9M4777SlDAAA0EmwlhAAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADC9NgWWlStXKjIyUv7+/oqLi9O2bdsu2PfFF19UfHy8rr32Wl177bVKTExs0d8wDM2fP1/h4eEKCAhQYmKi9u3b15bSAACAB3I5sLzxxhvKzMzUggULtGPHDg0ZMkTJyck6duxYq/1LSko0efJkbd68WWVlZYqIiNCYMWN0+PBhR5+lS5fqmWeeUV5enrZu3aouXbooOTlZX3/9ddufGQAA8BguB5bly5dr2rRpysjI0KBBg5SXl6fAwECtXr261f5//vOfNWPGDMXGxmrgwIFatWqVmpqaVFxcLOn80ZUVK1bokUce0cSJEzV48GC98sorOnLkiAoKCtr15AAAgGdwKbA0NDRo+/btSkxM/GYALy8lJiaqrKzsksaoq6uTzWbTddddJ0mqqKhQVVWV05jdunVTXFzcJY8JAAA8m7crnU+cOCG73a7Q0FCn9tDQUO3du/eSxvjd736nXr16OQJKVVWVY4zvjtm87bvq6+tVX1/vuF1TUyNJstlsstlsl/Zk0GE1v8a81oDnYf/uXFx5nV0KLO21ZMkSrVu3TiUlJfL392/zODk5OVq0aFGL9k2bNikwMLA9JaIDKSoqcncJAK4Q9u/Ooa6u7pL7uhRYQkJCZLVaVV1d7dReXV2tsLCwi943NzdXS5Ys0T/+8Q8NHjzY0d58v+rqaoWHhzuNGRsb2+pY2dnZyszMdNyuqalxTOYNDg525SmhA7LZbCoqKlJSUpJ8fHzcXQ6Ay4j9u3NpPkNyKVwKLL6+vho6dKiKi4uVkpIiSY4JtDNnzrzg/ZYuXarf//73eueddzRs2DCnbVFRUQoLC1NxcbEjoNTU1Gjr1q2aPn16q+P5+fnJz8+vRbuPjw+/4J0Irzfgudi/OwdXXmOXTwllZmZq6tSpGjZsmG699VatWLFCtbW1ysjIkCRNmTJFvXv3Vk5OjiTpySef1Pz58/X6668rMjLSMS+la9eu6tq1qywWix588EE98cQT6t+/v6KiovToo4+qV69ejlAEAAA6N5cDS3p6uo4fP6758+erqqpKsbGx2rhxo2PS7MGDB+Xl9c2Hj55//nk1NDQoLS3NaZwFCxZo4cKFkqS5c+eqtrZW9957r06dOqXbbrtNGzdubNc8FwAA4DkshmEY7i6ivWpqatStWzedPn2aOSydgM1m04YNGzR+/HgOGQMehv27c3Hl/Zu1hAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOm1KbCsXLlSkZGR8vf3V1xcnLZt23bBvp9++qnuuusuRUZGymKxaMWKFS36LFy4UBaLxelr4MCBbSkNAAB4IJcDyxtvvKHMzEwtWLBAO3bs0JAhQ5ScnKxjx4612r+urk59+/bVkiVLFBYWdsFxf/jDH+ro0aOOr/fee8/V0gAAgIdyObAsX75c06ZNU0ZGhgYNGqS8vDwFBgZq9erVrfa/5ZZb9NRTT2nSpEny8/O74Lje3t4KCwtzfIWEhLhaGgAA8FAuBZaGhgZt375diYmJ3wzg5aXExESVlZW1q5B9+/apV69e6tu3r37xi1/o4MGD7RoPAAB4Dm9XOp84cUJ2u12hoaFO7aGhodq7d2+bi4iLi9PLL7+sAQMG6OjRo1q0aJHi4+O1e/duBQUFtehfX1+v+vp6x+2amhpJks1mk81ma3Md6BiaX2Nea8DzsH93Lq68zi4Flitl3Lhxju8HDx6suLg4XX/99frLX/6ie+65p0X/nJwcLVq0qEX7pk2bFBgYeEVrhXkUFRW5uwQAVwj7d+dQV1d3yX1dCiwhISGyWq2qrq52aq+urr7ohFpXXXPNNbrhhhu0f//+VrdnZ2crMzPTcbumpkYREREaM2aMgoODL1sdMCebzaaioiIlJSXJx8fH3eUAuIzYvzuX5jMkl8KlwOLr66uhQ4equLhYKSkpkqSmpiYVFxdr5syZLhV5MWfPntWBAwf0q1/9qtXtfn5+rU7g9fHx4Re8E+H1BjwX+3fn4Mpr7PIpoczMTE2dOlXDhg3TrbfeqhUrVqi2tlYZGRmSpClTpqh3797KycmRdH6i7meffeb4/vDhw9q5c6e6du2q6OhoSdLs2bP1b//2b7r++ut15MgRLViwQFarVZMnT3a1PAAA4IFcDizp6ek6fvy45s+fr6qqKsXGxmrjxo2OibgHDx6Ul9c3Hz46cuSIfvSjHzlu5+bmKjc3VwkJCSopKZEkHTp0SJMnT9bJkyfVo0cP3XbbbSovL1ePHj3a+fQAAIAnaNOk25kzZ17wFFBzCGkWGRkpwzAuOt66devaUgYAAOgkWEsIAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFHYrdbteWLVv07rvvasuWLbLb7e4uCQBwFRBY0GHk5+crOjpaSUlJWr58uZKSkhQdHa38/Hx3lwYAuMIILOgQ8vPzlZaWppiYGJWWlmrt2rUqLS1VTEyM0tLSCC0A4OEILDA9u92urKwsTZgwQQUFBYqLi1NAQIDi4uJUUFCgCRMmaPbs2ZweAgAPRmCB6ZWWlqqyslLz5s2TYRhOc1gMw1B2drYqKipUWlrq7lIBAFcIgQWmd/ToUUnSgQMHWp3D8q9//cupHwDA8xBYYHrh4eGSpF/96letzmH51a9+5dQPAOB5vN1dAPB9RowYIW9vb3Xv3l35+fkyDEMnT55UXFyc8vPz1adPH508eVIjRoxwd6kAgCuEIywwvQ8++ECNjY2qrq5WamqqysvLde7cOZWXlys1NVXV1dVqbGzUBx984O5SAQBXCIEFptc8N+W1117Trl27NHLkSE2ePFkjR47U7t279dprrzn1AwB4HgILTK95bkq/fv20f/9+FRUVKTMzU0VFRdq3b5/69u3r1A8A4HkILDC9+Ph4RUZGavHixbJYLEpISNDIkSOVkJAgi8WinJwcRUVFKT4+3t2lAgCuEAILTM9qtWrZsmUqLCxUSkqK0xyWlJQUFRYWKjc3V1ar1d2lAgCuED4lhA4hNTVV69evV1ZWlkaOHOloj4qK0vr165WamurG6gAAVxqBBR1GamqqJk6cqM2bN+vtt9/WuHHjNHr0aI6sAEAnQGBBh2K1WpWQkKDa2lolJCQQVgCgk2AOCzoUu93utJYQCx4CQOdAYEGHkZ+f3+paQvn5+e4uDQBwhRFY0CHk5+crLS2t1bWE0tLSCC0A4OEILDA9u92urKwsTZgwQQUFBYqLi1NAQIDi4uJUUFCgCRMmaPbs2ZweAgAP1qbAsnLlSkVGRsrf319xcXHatm3bBft++umnuuuuuxQZGSmLxaIVK1a0e0x0LqWlpaqsrNS8efPk5eX8K+vl5aXs7GxVVFSotLTUTRUCAK40lwPLG2+8oczMTC1YsEA7duzQkCFDlJycrGPHjrXav66uTn379tWSJUsUFhZ2WcZE59K8RtBNN93U6vbmdtYSAgDP5XJgWb58uaZNm6aMjAwNGjRIeXl5CgwM1OrVq1vtf8stt+ipp57SpEmT5Ofnd1nGROfSvEbQ7t27W93e3M5aQgDguVwKLA0NDdq+fbsSExO/GcDLS4mJiSorK2tTAVdiTHiWb68l1NTU5LStqamJtYQAoBNw6cJxJ06ckN1uV2hoqFN7aGio9u7d26YC2jJmfX296uvrHbdramokSTabTTabrU11wNyefPJJTZo0Sf/+7/+urKwsnTt3Tu+9956WLVumDRs2aN26dWpqamoRaAB0LM1/w/lb3jm48jp3yCvd5uTkaNGiRS3aN23apMDAQDdUhCvNz89Pc+fO1UsvvaTbb7/d0R4aGqq5c+fKz89PGzZscGOFAC6noqIid5eAq6Curu6S+7oUWEJCQmS1WlVdXe3UXl1dfcEJtVdizOzsbGVmZjpu19TUKCIiQmPGjFFwcHCb6oD5jR8/XgsXLlRJSYmKioqUlJSkUaNGcXl+wIPYbDbH/u3j4+PucnCFNZ8huRQuBRZfX18NHTpUxcXFSklJkXR+DkFxcbFmzpzpUpHtGdPPz6/VCbw+Pj78gns4Hx8f3XHHHaqvr9cdd9zB6w14KP6edw6uvMYunxLKzMzU1KlTNWzYMN16661asWKFamtrlZGRIUmaMmWKevfurZycHEnnJ9V+9tlnju8PHz6snTt3qmvXroqOjr6kMQEAQOfmcmBJT0/X8ePHNX/+fFVVVSk2NlYbN250TJo9ePCg08W9jhw5oh/96EeO27m5ucrNzVVCQoJKSkouaUwAANC5WQzDMNxdRHvV1NSoW7duOn36NHNYOgGbzaYNGzZo/PjxHDIGPAz7d+fiyvs3awkBAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7CgQ7Hb7dqyZYveffddbdmyRXa73d0lAQCuAgILOoz8/HxFR0crKSlJy5cvV1JSkqKjo5Wfn+/u0gAAVxiBBR1Cfn6+0tLSFBMTo9LSUq1du1alpaWKiYlRWloaoQUAPByBBaZnt9uVlZWlCRMmqKCgQHFxcQoICFBcXJwKCgo0YcIEzZ49m9NDAODBCCwwvdLSUlVWVmrevHlO61RJkpeXl7Kzs1VRUaHS0lI3VQgAuNIILDC9o0ePSpJuuummVrc3tzf3AwB4HgILTC88PFyStHv37la3N7c39wMAeB4CC0wvPj5ekZGRWrx4sZqampy2NTU1KScnR1FRUYqPj3dThQCAK83b3QUA38dqtWrZsmVKS0vTv/3bv8nX11cHDhzQyy+/rIaGBr399ttav369rFaru0sFAFwhBBZ0CKmpqRo2bJg2bNjgaNu1a5ck6ZZbblFqaqq7SgMAXAUEFnQIKSkp+vDDD+Xr66vU1FQFBgaqrq5O+fn5+vDDD5WSkqKCggJ3lwkAuEIILDC9c+fO6a9//at8fX115swZWSwWbdiwQePHj9eaNWsUFBSkv/71rzp37pwCAgLcXS4A4Apg0i1Mb86cOZKkzMxMWa1Wp7WErFarHnzwQad+AADPwxEWmN6+ffskSX369FF0dLQqKyslScuXL1dkZKSysrKc+gEAPA9HWGB6/fv3lyTNnDmz1bWE7rvvPqd+AADPYzEMw3B3Ee1VU1Ojbt266fTp0woODnZ3ObjMzp49q6CgIFksFtXV1clqtTrmsNjtdgUGBsowDJ05c0Zdu3Z1d7kA2sFmszn2bx8fH3eXgyvMlfdvjrDA9D766CNJkmEYCg4O1pgxY7R8+XKNGTNGwcHBas7czf0AAJ6HOSwwveY1gqKiolRRUaGSkhKn7c3trCUEAJ6LwALTa14jqKKiQj179tTAgQN14sQJhYSEaO/evaqoqHDqBwDwPAQWmF5cXJwkydfXV19++aXTdVgMw1BQUJAaGhoc/QAAnoc5LDC9P/7xj5KkhoYGpaWlqby8XOfOnVN5ebnS0tLU0NDg1A8A4HkILDC9AwcOSJJWrVqlXbt2aeTIkZo8ebJGjhyp3bt368UXX3TqBwDwPAQWmF6/fv0knf+U0P79+1VUVKTMzEwVFRVp3759ampqcuoHAPA8XIcFptfQ0KAuXbqoe/fuOnTokAzDcMxhsVgs6tOnj06ePKna2lr5+vq6u1wA7cB1WDoXrsMCj+Lr66tZs2apurpaffr00apVq/TVV19p1apV6tOnj6qrqzVr1izCCtDB2e12p7XC7Ha7u0uCiXCEBR3G3Llz9fTTT6uxsdHR5u3trVmzZmnp0qVurAxAe+Xn5ysrK8uxVpgkRUZGatmyZUpNTXVfYbiiOMICj7R06VLV1tYqNzdX48ePV25urmprawkrQAeXn5+vtLS0VtcKS0tLU35+vrtLhAlwhAUdDue4Ac9ht9sVHR2tmJgYFRQUyG63O/Zvq9WqlJQU7d69W/v27ZPVanV3ubjMOMICAOgQSktLVVlZqXnz5snLy/ktycvLS9nZ2aqoqFBpaambKoRZEFgAAG7TvAbYTTfd1Or25nbWCgOBBQDgNs1rgO3evbvV7c3trBUGAgsAwG3i4+MVGRmpxYsXOy4C2aypqUk5OTmKiopSfHy8myqEWbQpsKxcuVKRkZHy9/dXXFyctm3bdtH+b775pgYOHCh/f3/FxMRow4YNTtvvvvtuWSwWp6+xY8e2pTR4uIaGBj3zzDN64YUX9MwzzzjWEQLQMVmtVi1btkyFhYVKSUlxWissJSVFhYWFys3NZcItJMNF69atM3x9fY3Vq1cbn376qTFt2jTjmmuuMaqrq1vt//777xtWq9VYunSp8dlnnxmPPPKI4ePjY+zatcvRZ+rUqcbYsWONo0ePOr6++uqrS67p9OnThiTj9OnTrj4ddCBz5swxvL29DUmOL29vb2POnDnuLg1AO7311ltGZGSk0/4dFRVlvPXWW+4uDVeQK+/fLn+sOS4uTrfccov+8Ic/SDp/yC4iIkL33XefHnrooRb909PTVVtbq8LCQkfbj3/8Y8XGxiovL0/S+SMsp06dUkFBQRsiFx9r7gzmzp2rp556SqGhoVq0aJH8/PxUX1+vBQsWqLq6WnPmzOF6LEAHZ7fbtXnzZr399tsaN26cRo8ezZEVD+fK+7e3KwM3NDRo+/btys7OdrR5eXkpMTFRZWVlrd6nrKxMmZmZTm3JycktwklJSYl69uypa6+9VrfffrueeOIJde/evdUx6+vrVV9f77hdU1Mj6fz1OWw2mytPCR1AQ0ODnn76afXs2VMVFRUyDENFRUVKSkrSlClTFBkZqaeffloLFizg8vxABzdixAjV1tZqxIgRampqajGvBZ7FlfdslwLLiRMnZLfbFRoa6tQeGhqqvXv3tnqfqqqqVvtXVVU5bo8dO1apqamKiorSgQMHNG/ePI0bN05lZWWtpuucnBwtWrSoRfumTZsUGBjoylNCB/C3v/1NjY2NSktL06ZNmxztRUVFkqS77rpLzz//vO6//379+7//u7vKBHAZNe/f8Gx1dXWX3NelwHKlTJo0yfF9TEyMBg8erH79+qmkpER33HFHi/7Z2dlOR21qamoUERGhMWPGcErIA73zzjuSpIceekhhYWGy2WyOIyw+Pj6KjY3V888/Lz8/P40fP97N1QJoj+/u3/BszWdILoVLgSUkJERWq1XV1dVO7dXV1QoLC2v1PmFhYS71l6S+ffsqJCRE+/fvbzWw+Pn5yc/Pr0W7j48Pv+Ae6IYbbpB0Prj8+te/drQ3v97NgeaGG27g9Qc8BH/POwdXXmOXPtbs6+uroUOHqri42NHW1NSk4uJiDR8+vNX7DB8+3Km/dP5Q34X6S9KhQ4d08uRJLhQESdKMGTPk7e2tRx55xGmlZklqbGzU/Pnz5e3trRkzZripQgDAlebydVgyMzP14osvas2aNdqzZ4+mT5+u2tpaZWRkSJKmTJniNCn3gQce0MaNG7Vs2TLt3btXCxcu1EcffaSZM2dKks6ePas5c+aovLxclZWVKi4u1sSJExUdHa3k5OTL9DTRkfn6+mrWrFmqrq5Wnz59tGrVKn311VdatWqV+vTpo+rqas2aNYsJtwDgwVyew5Kenq7jx49r/vz5qqqqUmxsrDZu3OiYWHvw4EGnBaxGjBih119/XY888ojmzZun/v37q6CgwLE+hNVq1SeffKI1a9bo1KlT6tWrl8aMGaPHH3+81dM+6JyaP7L89NNPOx1J8fb25iPNANAJuHwdFjPiOiydR0NDg5599ln985//1O2336777ruPIyuAh+A6LJ2PK+/fBBZ0ODabTRs2bND48eOZlAd4iPz8fGVlZamystLRFhkZqWXLlik1NdV9heGKcuX9m8UPAQBulZ+fr7S0NMXExKi0tFRr165VaWmpYmJilJaWpvz8fHeXCBMgsAAA3MZutysrK0sTJkxQQUGB4uLiFBAQoLi4OBUUFGjChAmaPXu27Ha7u0uFmxFYAABuU1paqsrKSs2bN8/pAxvS+aVfsrOzVVFRodLSUjdVCLMgsAAA3Obo0aOS5Pjk6Hc1tzf3Q+dFYEGH0tDQoGeeeUYvvPCCnnnmGTU0NLi7JADt0HyB0N27d7e6vbmdC4mCwIIOY+7cuerSpYtmz56tDRs2aPbs2erSpYvmzp3r7tIAtFF8fLwiIyO1ePHiFiszNzU1KScnR1FRUYqPj3dThTALAgs6hLlz5+qpp55S9+7dlZeXp5deekl5eXnq3r27nnrqKUIL0EFZrVYtW7ZMhYWFSklJUXl5uc6dO6fy8nKlpKSosLBQubm5XI8FXIcF5tfQ0KAuXbqoe/fuOnTokAzDcFyHxWKxqE+fPjp58qRqa2u5iBzQQbV2HZaoqCjl5uZyHRYPxnVY4FGee+45NTY26oknnpC3t/NqEt7e3nrsscfU2Nio5557zk0VAmiv1NRU7d+/X0VFRcrMzFRRUZH27dtHWIGDy2sJAVfbgQMHJEkTJkxodXtze3M/AB2T1WpVQkKCamtrlZCQwGkgOOEIC0yvX79+kqTCwsJWtze3N/cD0DHZ7XZt2bJF7777rrZs2cLF4uCEOSwwPeawAJ6PtYQ6J1fevzklBFOpq6vT3r17W7T//Oc/1yuvvKLQ0FBl/PrXqjP8VfrBB3pp1Sp99dVXmjJlygWv4zBw4EAFBgZe6dIBtFHzWkITJkzQq6++qkOHDqlPnz5aunSp0tLStH79ekILOMICc9mxY4eGDh16Wcfcvn27br755ss6JoDLw263Kzo6WjExMSooKJDdbnccQbVarUpJSdHu3bu1b98+5rR4II6woMMaOHCgtm/ffsHtDQ0NWvmnV/RW6S7dFR+j394z5XtPAw0cOPBylwngMmleS2jt2rXy8vJymrfSvJbQiBEjVFpaqlGjRrmvULgdgQWmEhgY+L1HQ/zD+6v0+XJlTf+xYq/vfpUqA3AlfHstoW9Puu3SpYtGjx7NWkJwILAAANymeY2gP/zhD/rjH//omHS7fPlyRUZG6t5773Xqh86LwAIAcJv4+Hj17NlT2dnZuvPOOzVr1izt27dP/fv316ZNmzRv3jz17NmTtYRAYAEAuFfzZz/++c9/6u9//7ujPSAgwF0lwYS4cBwAwG1KS0t1/PjxVrdZLBZJ0rFjx1RaWno1y4IJEVgAAG5z+PBhSdK4ceN0+vRpp7WETp06pXHjxjn1Q+dFYAEAuE3z0ZXU1FT5+PgoISFBI0eOVEJCgnx8fJSSkuLUD50XgQUA4DY9evSQdP5qt01NTU7bmpqaVFBQ4NQPnReBBQDgNr1795Ykbdy4USkpKSovL9e5c+dUXl6ulJQUbdy40akfOi8+JQQAcJv4+HhFRkYqJCREn3zyiUaOHOnYFhkZqaFDh+rkyZN8rBkEFgCA+1itVi1btkx33XWX41NBzb744gtVVlbqrbfeYh0hcEoIAOBe5eXlktQisHh5eTltR+dGYAEAuE1DQ4OefvpphYaGqq6uzuljzbW1tQoNDdXTTz+thoYGd5cKN+OUEK6qihO1qq1vbNcYB47XOv719m7/r3AXP29FhXRp9zgAXPfcc8+psbFRTzzxRIv92dvbW4899ph+85vf6LnnntODDz7oniJhCgQWXDUVJ2o1Orfkso2XtX7XZRtr8+xRhBbADQ4cOCDp/OmgqKgoffnll5LOL34YERGh+fPnO/VD50VgwVXTfGRlRXqsont2bfs45+pVWFKmCaOGq0uAX7tq2n/srB58Y2e7j/oAaJt+/fpJkn7961+32Pbll19q2rRpTv3QeRFYcNVF9+yqm3p3a/P9bTabqnpIN19/rXx8fC5jZQCutt/85jeaNWvWJfVD58akWwCA25SUlDi+9/b2VmxsrAYMGKDY2FinOS3f7ofOiSMsAAC3Wb58uaTz12NpbGzUzp07nbZbrVbZ7XYtX77csRAiOieOsAAA3KZ5kq3dbm91e3N7cz90XgQWAIDb9OrVy/F9z549lZeXp5deekl5eXnq2bNnq/3QOXFKCFeVxbtGFTWfy8u/7Z8Samxs1JHGI9rz1Z52X4elouasLN417RoDQNsFBAQ4vr/55ps1aNAgHT58WP369dPNN9/sWPzw2/3QObXpr/3KlSv11FNPqaqqSkOGDNGzzz6rW2+99YL933zzTT366KOqrKxU//799eSTT2r8+PGO7YZhaMGCBXrxxRd16tQp/eQnP9Hzzz+v/v37t6U8mJjPNVs1b9viyzLWcxufuyzj+Fxzh6Tx39sPwOW3f/9+x/cbN250BJSL9UPn5HJgeeONN5SZmam8vDzFxcVpxYoVSk5O1ueff+50+K7ZBx98oMmTJysnJ0cTJkzQ66+/rpSUFO3YsUM33XSTJGnp0qV65plntGbNGkVFRenRRx9VcnKyPvvsM/n7+7f/WcI0bKfitOzOn6tfO67D0tjYqPffe18/ue0n7T7CcuDYWd3/Zy5IBVwNdXV12rt3r1PbheaufJfdbteOHTtatA8cOFCBgYGXpT6Ym8UwDMOVO8TFxemWW27RH/7wB0lSU1OTIiIidN999+mhhx5q0T89PV21tbUqLCx0tP34xz9WbGys8vLyZBiGevXqpaysLM2ePVuSdPr0aYWGhurll1/WpEmTvremmpoadevWTadPn1ZwcLArTwdX0e7DpzXh2fdUeN9t7b4Oy4YNGzR+/Ph2X4flctUE4PuX3vhs106ljxt1WR/zjbdLNCgm9oLbWXrD3Fx5/3bpv6cNDQ3avn27srOzHW1eXl5KTExUWVlZq/cpKytTZmamU1tycrIKCgokSRUVFaqqqlJiYqJje7du3RQXF6eysrJWA0t9fb3q6+sdt2tqzs9BsNlsstlsrjwlXEVnzp1/zT4++JUaG1v/o3buXJ0qD+y76Dj2Rrt27TqgMyqR1fv7l5yP7NdfAQGt/w9s//9fl6ixsZHfHaAd9hw9o4kvvCOL95kL9rGfO6vQX05zajOaGlXz/tr/f8si7x4/kLVLiOy1J9R4/KCk8/+nDv7JZFm8Wr5lzdm8Xdbyzy/4mEZjkDbNHKfI7oQWM3Ll765LgeXEiROy2+0KDQ11ag8NDW1xmK9ZVVVVq/2rqqoc25vbLtTnu3JycrRo0aIW7Zs2beLQoImVVVskWfXwXz+7YJ/6qv2qWvPgZX3csKkr5BcWfdE+H5a9py+Y0we0WVm1RT7XbJVfj+KLdxzUsqnnmO/un6cl+Uj69uX4P7zQI1/04eqP36GSkkD1ZP82pbq6ukvu2yE/JZSdne101KampkYREREaM2YMp4RM7Me1DYrZc0x9e3RRgE/rR0bOnRusyp/FXHSc80dYdikmJqbdR1gkqYuflf99Ae3049oGRe3qrW5BafK/wH75df3XOnroYKvb3v7rW3p/c7GajCZHm5fFqp+Mvl3jJt51wccN7/MD+ftdeK5jeFAP3dzr+kt8Frjams+QXAqXAktISIisVquqq6ud2qurqxUWFtbqfcLCwi7av/nf6upqhYeHO/WJjY1tdUw/Pz/5+bVc9M7Hx4e1ZUws9Bof/WJ41Pf06q7hAyMu2sNmsylIdRo/fhSvN2ASodf46DfxQ7+/4wW6zJo4VQ0NDXr22Wf1z3/+U7fffrvuu+8++fr6Xt5CYSqu/A136cJxvr6+Gjp0qIqLvznk19TUpOLiYg0fPrzV+wwfPtypvyQVFRU5+kdFRSksLMypT01NjbZu3XrBMQEAnsfX11f333+/7r33Xt1///2EFThx+ZRQZmampk6dqmHDhunWW2/VihUrVFtbq4yMDEnSlClT1Lt3b+Xk5EiSHnjgASUkJGjZsmW68847tW7dOn300Ud64YUXJEkWi0UPPvignnjiCfXv39/xseZevXopJSXl8j1TAADQYbkcWNLT03X8+HHNnz9fVVVVio2N1caNGx2TZg8ePCgvr28O3IwYMUKvv/66HnnkEc2bN0/9+/dXQUGB4xoskjR37lzV1tbq3nvv1alTp3Tbbbdp48aNXIMFAABIasN1WMyI67B0LpfzOiwAzIX9u3Nx5f2bxQ8BAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpuXxpfjNqvlivK8tUo+Oy2Wyqq6tTTU0NV8IEPAz7d+fS/L59KRfd94jAcubMGUlSRESEmysBAACuOnPmjLp163bRPh6xllBTU5OOHDmioKAgWSwWd5eDK6ympkYRERH68ssvWTsK8DDs352LYRg6c+aMevXq5bRwcms84giLl5eX+vTp4+4ycJUFBwfzBw3wUOzfncf3HVlpxqRbAABgegQWAABgegQWdDh+fn5asGCB/Pz83F0KgMuM/RsX4hGTbgEAgGfjCAsAADA9AgsAADA9AgsAADA9AgsAADA9Aksncffdd8tiseg///M/W2z77W9/K4vForvvvvvqF/YdL7/8siwWS4uvVatWua2mhQsXOurw9vZWZGSkZs2apbNnz7Z73NjY2MtTJDwC+2nbNe+n3/3Z7dy5UxaLRZWVlZf18SIjIx3Pu0uXLrr55pv15ptvXpZxV6xY0f4CPRCBpROJiIjQunXrdO7cOUfb119/rddff10/+MEP3FiZs+DgYB09etTp6xe/+EWLfg0NDVetph/+8Ic6evSoKisr9eSTT+qFF15QVlZWm8YyDEONjY2XuUJ4CvbTtvP399ef/vQn7du376o83mOPPaajR4/qf/7nf3TLLbcoPT1dH3zwQZvGupo/p46KwNKJ3HzzzYqIiFB+fr6jLT8/Xz/4wQ/0ox/9yKlvU1OTcnJyFBUVpYCAAA0ZMkTr1693bLfb7brnnnsc2wcMGKD/+q//chrj7rvvVkpKinJzcxUeHq7u3bvrt7/9rWw220XrtFgsCgsLc/oKCAhwHJFYtWqVoqKi5O/vL0k6deqUfv3rX6tHjx4KDg7W7bffro8//thpzCVLlig0NFRBQUG655579NBDD7l0dMPb21thYWHq06eP0tPT9Ytf/EJ/+9vfJEmvvvqqhg0bpqCgIIWFhennP/+5jh075rhvSUmJLBaL3n77bQ0dOlR+fn567bXXtGjRIn388ceO/6W9/PLLl1wPPBf7adv30wEDBmj06NF6+OGHL9pvy5YtuvXWW+Xn56fw8HA99NBDTv+JGDVqlO6//37NnTtX1113ncLCwrRw4cIW4zTv8zfccINWrlypgIAA/fd//7dLP/ff//736tWrlwYMGKBRo0bpiy++0KxZsxx/F/ANAksn8x//8R966aWXHLdXr16tjIyMFv1ycnL0yiuvKC8vT59++qlmzZqlX/7yl9qyZYuk838o+/TpozfffFOfffaZ5s+fr3nz5ukvf/mL0zibN2/WgQMHtHnzZq1Zs0Yvv/xyu96Y9+/fr7feekv5+fnauXOnJOlnP/uZjh07prffflvbt2/XzTffrDvuuENfffWVJOkvf/mLFi5cqMWLF+ujjz5SeHi4nnvuuTbXIEkBAQGO/xHZbDY9/vjj+vjjj1VQUKDKyspWD9s/9NBDWrJkifbs2aOkpCRlZWU5jtwcPXpU6enp7aoJnoP9tO376ZIlS/TWW2/po48+anX74cOHNX78eN1yyy36+OOP9fzzz+tPf/qTnnjiCad+a9asUZcuXbR161YtXbpUjz32mIqKii74uN7e3vLx8VFDQ8Ml/9yLi4v1+eefq6ioSIWFhcrPz1efPn0cR26OHj3q8vP3aAY6halTpxoTJ040jh07Zvj5+RmVlZVGZWWl4e/vbxw/ftyYOHGiMXXqVMMwDOPrr782AgMDjQ8++MBpjHvuuceYPHnyBR/jt7/9rXHXXXc5Peb1119vNDY2Otp+9rOfGenp6Rcc46WXXjIkGV26dHF8hYaGGoZhGAsWLDB8fHyMY8eOOfqXlpYawcHBxtdff+00Tr9+/Yw//vGPhmEYxvDhw40ZM2Y4bY+LizOGDBlywTq+bcGCBU59P/roIyMkJMRIS0trtf+HH35oSDLOnDljGIZhbN682ZBkFBQUXHRcgP308uynkyZNMm6//XbDMAzjf/7nfwxJRkVFhWEYhjFv3jxjwIABRlNTk+O+K1euNLp27WrY7XbDMAwjISHBuO2225zGv+WWW4zf/e53jtvXX3+98fTTTxuGYRj19fXG4sWLDUlGYWFhq/W19nMPDQ016uvrnfp9e1w484jVmnHpevTooTvvvFMvv/yyDMPQnXfeqZCQEKc++/fvV11dnZKSkpzaGxoanA5Jr1y5UqtXr9bBgwd17tw5NTQ0tDh8+8Mf/lBWq9VxOzw8XLt27bpojUFBQdqxY4fj9reXHL/++uvVo0cPx+2PP/5YZ8+eVffu3Z3GOHfunA4cOCBJ2rNnT4uJeMOHD9fmzZsvWse37dq1S127dpXdbldDQ4PuvPNO/eEPf5Akbd++XQsXLtTHH3+s//u//1NTU5Mk6eDBgxo0aJBjjGHDhl3y46FzYz89z9X9tNkTTzyhG2+8UZs2bVLPnj2dtu3Zs0fDhw93Ot3yk5/8RGfPntWhQ4cc84QGDx7sdL/w8HCnU72S9Lvf/U6PPPKIvv76a3Xt2lVLlizRnXfeKenSfu4xMTHy9fV1+fl1VgSWTug//uM/NHPmTEnnd6rvav70y9///nf17t3baVvz+h7r1q3T7NmztWzZMg0fPlxBQUF66qmntHXrVqf+Pj4+TrctFovjDf1CvLy8FB0d3eq2Ll26tKg1PDxcJSUlLfpec801F30cVwwYMEB/+9vf5O3trV69ejn+yNTW1io5OVnJycn685//rB49eujgwYNKTk5uMYnuu7UDF8N+2nb9+vXTtGnT9NBDD+lPf/pTm8a4lJ/JnDlzdPfdd6tr164KDQ11hKBL/bnzN8E1BJZOaOzYsWpoaJDFYlFycnKL7YMGDZKfn58OHjyohISEVsd4//33NWLECM2YMcPR1vw/pavp5ptvVlVVlePjxq258cYbtXXrVk2ZMsXRVl5e7tLj+Pr6tvrHee/evTp58qSWLFmiiIgISbrgufPWxrTb7S7Vgc6D/dT1/fTb5s+fr379+mndunUtHuett96SYRiOgPH+++8rKChIffr0cekxQkJCWv270J6fO38XLoxJt52Q1WrVnj179NlnnzkdBm4WFBSk2bNna9asWVqzZo0OHDigHTt26Nlnn9WaNWskSf3799dHH32kd955R//7v/+rRx99VB9++OHVfipKTEzU8OHDlZKSok2bNqmyslIffPCBHn74YUdweOCBB7R69Wq99NJL+t///V8tWLBAn3766WV5/B/84Afy9fXVs88+q3/961/629/+pscff/yS7hsZGamKigrt3LlTJ06cUH19/WWpCZ6B/bR9+2loaKgyMzP1zDPPOLXPmDFDX375pe677z7t3btXf/3rX7VgwQJlZmY6ndZqj/b83CMjI/Xuu+/q8OHDOnHixGWpx1MQWDqp4OBgBQcHX3D7448/rkcffVQ5OTm68cYbNXbsWP39739XVFSUJOk3v/mNUlNTlZ6erri4OJ08edLpfxNXi8Vi0YYNGzRy5EhlZGTohhtu0KRJk/TFF18oNDRUkpSenq5HH31Uc+fO1dChQ/XFF19o+vTpl+Xxe/TooZdffllvvvmmBg0apCVLlig3N/eS7nvXXXdp7NixGj16tHr06KG1a9delprgOdhP27efzp49W127dnVq6927tzZs2KBt27ZpyJAh+s///E/dc889euSRR9r1WN/Wnp/7Y489psrKSvXr189pHhAki2EYhruLAK62hQsXqqCgwPGRSwDmw36Kb+MICwAAMD0CCzq9rl27XvCrtLTU3eUBEPspOCUEaP/+/Rfc1rt3bwUEBFzFagC0hv0UBBYAAGB6nBICAACmR2ABAACmR2ABAACmR2ABAACmR2ABAACmR2ABAACmR2ABAACmR2ABAACm9/8AFudjh1j2PKwAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "kwrd_freq_df.boxplot(column=['Mean Freq_Part', 'Mean Freq_NonPart'])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e36ce5ea-c0e8-4df4-9034-6d21a9642a5d",
   "metadata": {},
   "source": [
    "On s'apperçoit que parmi la liste des mots-clés experts retournés, un grand nombre d'entre eux n'apparaissent pas dans les titres-mots clés concaténés. En dehors de ceux pour lesquels la fréquence d'apparition est positive, ils semblent donc peu discriminant pour les publications de ce champ. Ce résultat apparaît d'autant plus contre-intuitif que ce sont ces mêmes mots clefs qui ont été utilisés pour la réalisation de la requête.\n",
    "\n",
    "Il conviendrait ici d'extraire les mots clefs représentatifs de ces publications à partir d'un algorithme comme BM25. [à implémenter avec service alvis](https://text-mining-dev.migale.inrae.fr/demo/kes/)."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "02d30200-ed8e-4a74-8c5c-ddb7b9ec3cb6",
   "metadata": {},
   "source": [
    "On peut se demander si à l'inverse les mots-clés auteurs sont plus discriminants. On réitère pour ce faire l'opération précédente mais en utilisant les mots clés des auteurs."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "4f83e559-db5a-4cf9-9eac-77195b6e0fbf",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "5919\n",
      "4541\n",
      "CPU times: user 2.64 s, sys: 4.88 ms, total: 2.64 s\n",
      "Wall time: 2.64 s\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Author Keyword</th>\n",
       "      <th>Mean Freq_Part</th>\n",
       "      <th>Mean Freq_NonPart</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>672</th>\n",
       "      <td>citizen_science</td>\n",
       "      <td>0.024011</td>\n",
       "      <td>0.000222</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3047</th>\n",
       "      <td>participatory_research</td>\n",
       "      <td>0.016949</td>\n",
       "      <td>0.000222</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>126</th>\n",
       "      <td>agroecology</td>\n",
       "      <td>0.014124</td>\n",
       "      <td>0.004225</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3029</th>\n",
       "      <td>participatory_approach</td>\n",
       "      <td>0.012006</td>\n",
       "      <td>0.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4065</th>\n",
       "      <td>sustainability</td>\n",
       "      <td>0.009887</td>\n",
       "      <td>0.000667</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1737</th>\n",
       "      <td>gestational_diabetes</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000222</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1738</th>\n",
       "      <td>gestational_weight_gain</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000222</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1739</th>\n",
       "      <td>gh70_family</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000222</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1742</th>\n",
       "      <td>gibel_carp</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000222</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4540</th>\n",
       "      <td>zymoseptoria_tritici</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000222</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>4541 rows × 3 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "               Author Keyword  Mean Freq_Part  Mean Freq_NonPart\n",
       "672           citizen_science        0.024011           0.000222\n",
       "3047   participatory_research        0.016949           0.000222\n",
       "126               agroecology        0.014124           0.004225\n",
       "3029   participatory_approach        0.012006           0.000000\n",
       "4065           sustainability        0.009887           0.000667\n",